Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild pigs and deer do not spread GM corn via feces or accumulate transgenic residues in meat

28.10.2009
German study answers 2 questions, may raise more

Deer stew, roast of wild boar, venison ragout – come fall, all varieties of game are in season for gourmets. However, ever since the worldwide surge in genetically modified corn, critical consumers' appetites have abated somewhat.

After all, it was not clear precisely how wild animals digest transgenic corn and whether or not residues actually accumulate in meat, for example. Molecular biologists from the Technische Universitaet Muenchen (TUM) have shown that there is no need for concern – also with regard to the inadvertent dispersal of genetically modified corn via wild animal feces.

Only a few weeks ago we could still observe them: whole families of wild boar rummaging in the corn fields in early fall, feasting on corncobs. Corn – or maize, as it's known to scientists – is a high-energy delicacy for local game, which is why it is used specifically for winter feeding and to divert animals from farmers' fields. Today, with GM (genetically modified) maize acreage increasing worldwide, biologists are discussing a highly controversial question: What happens when a wild boar takes a snack in a transgenic maize field or when deer feed on imported GM maize in winter? Molecular biologists at the TUM can now provide answers to these questions.

With funding from the German Federal Agency for Nature Conservation, a research team from the TU München examined in detail how fallow deer (dama dama) and wild boars (sus scrofa) metabolize GM maize and whether they inadvertently disperse germinable transgenic seeds in the landscape via their feces. To find answers to these questions, the scientists working for Prof. Heinrich H.D. Meyer from the Chair of Physiology selectively fed fallow deer living in outdoor enclosures and wild boars kept in pens genetically modified corn chaff and grain corn for several weeks in a row. The respective control groups were fed conventional maize over the same time period. All the while the scientists collected samples of feces from every group to be analyzed for germinability at a later point in time.

After completing the experiment, the TUM physiologists took a number of samples from all of the wild animals: from the digestive tract, all internal organs, blood, muscles and other kinds of tissue. They then applied immunological techniques and polymerase chain reaction to look for transgenic components. They found them only in the digestive tract of GM-fed wild boars: Here they found evidence for small fragments of the gene that had been introduced into the GM maize. However, outside of the gastrointestinal tract the scientists found no trace whatsoever, neither in the tissue of wild boars nor in that of the fallow deer. Hence, there is no need to worry when enjoying a game dish: "The meat of the animals we examined was entirely free of transgenic components," said Prof. Meyer.

Organic farmers and environmentalists are much more concerned about the uncontrolled spread of GM maize via wild animal feces. Yet here, too, Prof. Meyer can ease everyone's worries. His team examined the collected samples of feces for intact maize corns capable of germination. A truly insignificant number makes it through the gastrointestinal passage at all: For wild boars a mere 0.015% of the conventional and 0.009% of the transgenic maize kernels were excreted intact. Only one single maize plantlet could then be grown under standard laboratory conditions, and one further seedling showed abnormal growth. The fallow deer were even tougher on the maize: Not a single intact and thus germinable maize corn could be found in their feces.

However, the digestion process is not as effective for all seeds and all animal species, as the scientists were also able to show. They had additionally fed all examined animal groups with conventional rape. They found not a single intact rape seed in the wild boar feces – but in those of the fallow deer there were plenty, and 13.6% of those were capable of germination. "This shows that such studies need to be conducted separately for all genetically modified plants," Prof. Meyer concluded.

Contact:
Prof. Heinrich H.D. Meyer
Chair of Physiology
Center of Life and Food Sciences Weihenstephan
Technische Universitaet Muenchen
Tel. 08161 /71-3508
E-Mail: physio@wzw.tum.de
Literature:
Wiedemann, S.; Lutz, B.; Albrecht, C.; Kuehn, R.; Killermann, B.; Einspanier, R.; Meyer, H.H.D.: Fate of genetically modified maize and conventional rapeseed, and endozoochory in wild boar (Sus scrofa). Mammalian Biology 74 (2009) 191-197. DOI:10.1016/j.mambio.2008.07.002

Guertler, P.; Lutz, B.; Kuehn, R.; Meyer, H.H.D.; Einspanier, R.; Killermann, B.; Albrecht, C.: Fate of recombinant DNA and Cry1Ab protein after ingestion and dispersal of genetically modified maize in comparison to rapeseed by fallow deer (Dama dama). European Journal of Wildlife Research 54 (2008) 36-43. DOI 10.1007/s10344-007-0104-4

Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 440 professors, 6,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 24,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university.

Jana Bodicky | EurekAlert!
Further information:
http://portal.mytum.de
http://www.weihenstephan.de/fml/physio/

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>