Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild pigs and deer do not spread GM corn via feces or accumulate transgenic residues in meat

28.10.2009
German study answers 2 questions, may raise more

Deer stew, roast of wild boar, venison ragout – come fall, all varieties of game are in season for gourmets. However, ever since the worldwide surge in genetically modified corn, critical consumers' appetites have abated somewhat.

After all, it was not clear precisely how wild animals digest transgenic corn and whether or not residues actually accumulate in meat, for example. Molecular biologists from the Technische Universitaet Muenchen (TUM) have shown that there is no need for concern – also with regard to the inadvertent dispersal of genetically modified corn via wild animal feces.

Only a few weeks ago we could still observe them: whole families of wild boar rummaging in the corn fields in early fall, feasting on corncobs. Corn – or maize, as it's known to scientists – is a high-energy delicacy for local game, which is why it is used specifically for winter feeding and to divert animals from farmers' fields. Today, with GM (genetically modified) maize acreage increasing worldwide, biologists are discussing a highly controversial question: What happens when a wild boar takes a snack in a transgenic maize field or when deer feed on imported GM maize in winter? Molecular biologists at the TUM can now provide answers to these questions.

With funding from the German Federal Agency for Nature Conservation, a research team from the TU München examined in detail how fallow deer (dama dama) and wild boars (sus scrofa) metabolize GM maize and whether they inadvertently disperse germinable transgenic seeds in the landscape via their feces. To find answers to these questions, the scientists working for Prof. Heinrich H.D. Meyer from the Chair of Physiology selectively fed fallow deer living in outdoor enclosures and wild boars kept in pens genetically modified corn chaff and grain corn for several weeks in a row. The respective control groups were fed conventional maize over the same time period. All the while the scientists collected samples of feces from every group to be analyzed for germinability at a later point in time.

After completing the experiment, the TUM physiologists took a number of samples from all of the wild animals: from the digestive tract, all internal organs, blood, muscles and other kinds of tissue. They then applied immunological techniques and polymerase chain reaction to look for transgenic components. They found them only in the digestive tract of GM-fed wild boars: Here they found evidence for small fragments of the gene that had been introduced into the GM maize. However, outside of the gastrointestinal tract the scientists found no trace whatsoever, neither in the tissue of wild boars nor in that of the fallow deer. Hence, there is no need to worry when enjoying a game dish: "The meat of the animals we examined was entirely free of transgenic components," said Prof. Meyer.

Organic farmers and environmentalists are much more concerned about the uncontrolled spread of GM maize via wild animal feces. Yet here, too, Prof. Meyer can ease everyone's worries. His team examined the collected samples of feces for intact maize corns capable of germination. A truly insignificant number makes it through the gastrointestinal passage at all: For wild boars a mere 0.015% of the conventional and 0.009% of the transgenic maize kernels were excreted intact. Only one single maize plantlet could then be grown under standard laboratory conditions, and one further seedling showed abnormal growth. The fallow deer were even tougher on the maize: Not a single intact and thus germinable maize corn could be found in their feces.

However, the digestion process is not as effective for all seeds and all animal species, as the scientists were also able to show. They had additionally fed all examined animal groups with conventional rape. They found not a single intact rape seed in the wild boar feces – but in those of the fallow deer there were plenty, and 13.6% of those were capable of germination. "This shows that such studies need to be conducted separately for all genetically modified plants," Prof. Meyer concluded.

Contact:
Prof. Heinrich H.D. Meyer
Chair of Physiology
Center of Life and Food Sciences Weihenstephan
Technische Universitaet Muenchen
Tel. 08161 /71-3508
E-Mail: physio@wzw.tum.de
Literature:
Wiedemann, S.; Lutz, B.; Albrecht, C.; Kuehn, R.; Killermann, B.; Einspanier, R.; Meyer, H.H.D.: Fate of genetically modified maize and conventional rapeseed, and endozoochory in wild boar (Sus scrofa). Mammalian Biology 74 (2009) 191-197. DOI:10.1016/j.mambio.2008.07.002

Guertler, P.; Lutz, B.; Kuehn, R.; Meyer, H.H.D.; Einspanier, R.; Killermann, B.; Albrecht, C.: Fate of recombinant DNA and Cry1Ab protein after ingestion and dispersal of genetically modified maize in comparison to rapeseed by fallow deer (Dama dama). European Journal of Wildlife Research 54 (2008) 36-43. DOI 10.1007/s10344-007-0104-4

Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 440 professors, 6,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 24,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university.

Jana Bodicky | EurekAlert!
Further information:
http://portal.mytum.de
http://www.weihenstephan.de/fml/physio/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>