Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do people with autism see faces differently?

26.11.2014

The way people with autism spectrum disorder (ASD) gather information - not the judgement process itself - might explain why they gain different perceptions from peoples' faces, according to a new study from Hôpital Rivière-des-Prairies and the University of Montreal.

"The evaluation of an individual's face is a rapid process that influences our future relationship with the individual," said Baudouin Forgeot d'Arc, lead author of the study. "By studying these judgments, we wanted to better understand how people with ASD use facial features as cues. Do they need more cues to be able to make the same judgment?"

The study was conducted in collaboration with a team from the Hôpital Robert-Debré in Paris, who recruited 71 individuals, including a control group (n=38) and an ASD group (n=33), without intellectual disabilities. The group was divided into aged-matched subgroups: children (mean age 10 years) and adults (mean age 33 years) The researchers presented 36 pairs of photographic and synthetic images to the participants, and evaluated their social judgment by asking them to indicate which emotionally neutral faces appeared "kind" to them.

When photographic images of neutral faces were presented, the judgment of ASD participants was mixed compared to participants in the control group - the choices of the ASD participants were not predictable from one subject to another.

However, the researchers found no difference between the groups when participants were presented with synthetic images, which were nevertheless created based on the characteristics of the photographic images previously shown. Moreover, when the synthetic image pairs contained less useful judgment clues (less pronounced facial features), the results for the two groups were influenced in the same way by this difficulty.

The identical results of the two groups when they viewed synthetic images suggest that it is not the judgment process itself that is different: judging whether a person seems "kinder" than another can be accomplished similarly in participants with or without ASD. However, the differences observed when they viewed photographic images suggest that the way they gather information about people's faces is critical.

"We now want to understand how the gathering of cues underpinning these judgments is different between people with or without ASD depending on whether they are viewing synthetic or photographic images. Ultimately, a better understanding of how people with ASD perceive and evaluate the social environment will allow us to better interact with them," said Forgeot d'Arc.

About the study

Baudouin Forgeot d'Arc is a researcher at the Institut universitaire en santé mentale de Montréal and the Hôpital Rivière-Des-Prairies He is a affiliated with the Centre d'excellence en troubles envahissants du développement at the University of Montreal and is an assistant clinical professor at the university's Faculty of Medicine.

His French collaborators (Franck Ramus, Aline Lefebvre, Delphine Brottier, Tiziana Zalla, Sanaa Moukawane, Frédérique Amsellem, Laurence Letellier, Hugo Peyre, Marie-Christine Mouren, Marion Leboyer, and Richard Delorme) are researchers at the École normale supérieure (Paris, France), the Hôpital Robert-Debré (Paris, France), and the INSERM U955 (Créteil, France).

The University of Montreal is officially known as Université de Montréal.

William Raillant-Clark | EurekAlert!
Further information:
http://www.nouvelles.umontreal.ca/udem-news/index.php

Further reports about: ASD difference facial features photographic social environment synthetic

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>