Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why adolescents are more impatient than adults

23.06.2015

Study shows structural and functional differences in the brain: Would you rather have €20 now or €50 in a month? Adolescents faced with this question often yield to the impulse to take the immediate reward rather than waiting for the bigger one.

Researchers at Stanford University, the Max Planck Institute for Human Development, and the University of California, Davis, have investigated why it is so difficult for adolescents to resist short-term temptations by studying the underlying brain mechanisms. The results of their study have been published in the Proceedings of the National Academy of Sciences of the USA (PNAS).

Adolescents given the choice between a small reward right away and a bigger reward later tend to choose the immediate, smaller reward. Why? Because they are less able than adults to focus on the possible future benefit of the options. As a result, they tend to be more impatient and to opt for immediate rewards rather than pursuing long-term goals.

In their study, the researchers found that adolescents’ impatience is associated with a change in both brain structure and functioning. The researchers asked 50 participants aged between 8 and 25 years to complete a decision task. Participants had to decide whether to take a small payment immediately or a larger payment later. During the decision task, the activity and structural connectivity of brain regions known to be activated in decision making were measured using magnetic resonance imaging (MRI).

The results of the study show that it was difficult for the adolescents to wait for the larger payment. The brain imaging results reveal why. The structural connections between two key areas activated during decision making are not yet as strong in adolescents as they are in adults.

These two areas are the dorsolateral prefrontal cortex – which is activated by tasks such as planning for the future – and the striatum, which is part of the reward evaluation system. Due to the lower connection strength, the influence of the dorsolateral prefrontal cortex on reward evaluation is relatively limited in adolescence, which is why larger but later options appear less appealing and impulsivity prevails.

“It’s not that adolescents don’t plan for the future at all. But when they make decisions, they focus much more on the here and now. Adolescence is a training ground for the brain. Although it’s more difficult for adolescents to decide against short-term rewards, they are capable of doing so,” says Wouter van den Bos, lead author of the study and researcher in the Center for Adaptive Rationality at the Max Planck Institute for Human Development in Berlin.

With increasing age, however, the connections between the two areas of the brain become stronger, and future goals come to play a more important role in our decisions. As a result, adolescents gradually learn to curb their impatience and to take a more forward-looking approach. “All the same, it’s important not to take decisions completely out of adolescents’ hands,” says van den Bos. “The brain learns from mistakes, and needs opportunities to do so. What we can do is to keep reminding adolescents of their longer-term goals,” says van den Bos.

In future studies, the researchers want to find out to what extent the social environment influences adolescents’ decisions.

Background Information

Original study
van den Bos, W., Rodriguez, C., Schweitzer, J. B., & McClure, S. M. (2015). Adolescent impatience decreases with increased fronto-striatal connectivity. Proceedings of the National Academy of Sciences of the USA.
doi: 10.1073/pnas.1423095112

Max Planck Institute for Human Development
The Max Planck Institute for Human Development in Berlin was founded in 1963. It is an interdisciplinary research institution dedicated to the study of human development and education. The Institute belongs to the Max Planck Society for the Advancement of Science, one of the leading organizations for basic research in Europe.

Weitere Informationen:

https://www.mpib-berlin.mpg.de/en/media/2015/06/why-adolescents-are-more-impatie...

Kerstin Skork | Max-Planck-Institut für Bildungsforschung

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>