Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whales, ships more common through Bering Strait

26.02.2014

The Arctic is home to a growing number of whales and ships, and to populations of sub-Arctic whales that are expanding their territory into newly ice-free Arctic waters.

A study of the narrow passage of the Bering Strait uses underwater microphones to track the whales by their sounds. Three years of recordings reveal more detections of both Arctic and sub-Arctic whales traveling through the narrow choke point.


A fin whale is shown breaching the water's surface.

Credit: Kate Stafford, UW

Kate Stafford, an oceanographer with the University of Washington's Applied Physics Laboratory, will present the results Feb. 26 at the Ocean Sciences meeting in Honolulu. The recordings show Arctic beluga and bowhead whales migrating seasonally through the region from the Arctic south to spend winter in the Bering Sea. They also detect large numbers of sub-Arctic humpback, fin and killer whales traveling north through the Bering Strait to feed in the biologically rich Chukchi Sea.

"It's not particularly surprising to those of us who work up in the Arctic," Stafford said. "The Arctic seas are changing. We are seeing and hearing more species, farther north, more often. And that's a trend that is going to continue."

Stafford placed microphones below the water's surface and recorded in summer and early winter from 2009 to 2012 as part of a U.S.-Russian scientific collaboration. Melodious humpback whale songs showed up regularly on recordings into late fall. Fin and killer whales, which are southern species that seldom travel into Arctic waters, were heard into early November.

"These animals are expanding their range," Stafford said. "They're taking advantage of regions in seasons that they may not have previously."

The recordings also picked up ships using the ice-free summers to travel through two international shipping lanes. This poses an increased risk of collisions between whales and ships, and of noise pollution.

"Marine mammals rely primarily on sound to navigate, to find food and to find mates. Sound is their modality," Stafford said. "If we increase the ambient sound level, it has the potential to reduce the communication range of cetaceans and all marine mammals."

The Bering Strait is famous as a land bridge that prehistoric humans used to travel from Russia to North America. Today, the waterway is 58 miles wide and maximum 160 feet deep, with about one-third of its span in U.S. waters and the rest in Russia. The two coasts are quite different, Stafford said, which makes the international collaboration essential to understanding the full environment.

A recent paper by Stafford and other scientists includes visual sightings of killer whales, a quieter southern-dwelling whale, just north of the strait in the southern Chukchi Sea. Killer whales are now seen fairly regularly in this area, which is being considered for oil and gas exploration.

"The Arctic areas are changing," Stafford said. "They are becoming more friendly to sub-Arctic species, and we don't know how that will impact Arctic whales. Will they be competitors for food? Will they be competitors for habitat? Will they be competitors for acoustic space, for instance these humpbacks yapping all the time in the same frequency band that bowheads use to communicate? We just don't know."

Stafford supports the idea of slowing ship speeds in the Bering Strait, reducing motor noise and the chance of ship strikes.

Another suggestion to protect whales builds on tagging work showing that bowhead whales tend to travel up the U.S. side on the way north in the spring and on the Russian side on their way back in the fall. The proposal suggests that ships follow the American coast in the fall and the Russian coast in the spring to reduce interactions between ships and whales.

Still to be explored is whether the increased whale travel through the region is due to rising whale populations, expanded ranges, or both. Logbooks from Soviet whaling ships in the mid-to-late 20th century report sub-Arctic whales in the region, but none were seen from about 1980 to 2010.

"The question is, are these whale populations recovering and so they're reoccupying former habitat, or are they actually invading the Arctic because they can, because there is less seasonal sea ice?" Stafford said.

Collaborators on the research are Janet Clarke at Leidos Inc. and Sue Moore at the National Oceanic and Atmospheric Administration. The research was funded by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration.

For more information, contact Stafford at 206-685-8617 or stafford@apl.washington.edu.

Stafford will speak in Session #102 at the Ocean Sciences meeting in Honolulu on Wednesday, Feb. 26 at 2:45 p.m. in room 316A.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

Further reports about: Administration Arctic Atmospheric Laboratory Ocean Oceanic Russian acoustic killer species

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>