Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


West African droughts are the norm, not an anomaly

Some droughts lasted centuries in the past, and a warming planet may make future droughts more devastating

A new study of lake sediments in Ghana suggests that severe droughts lasting several decades, even centuries, were the norm in West Africa over the past 3,000 years.

The earlier dry spells dwarfed the well-documented drought that plagued West Africa in the late-20th century, and as the planet warms, the study's authors believe the region's rainfall patterns will have an even greater impact.

The team of geoscientists and climate scientists, led by Jonathan Overpeck of the University of Arizona and his former doctoral student, lead author Timothy Shanahan, who is now at the University of Texas (UT) at Austin, announced their findings in the April 17, 2009, issue of Science.

Because of close agreement amongst several data sets, the scientists believe the droughts are driven in part by circulation of the ocean and atmosphere in and above the Atlantic--and possibly beyond. If climate models for such circulation patterns hold true, the study suggests global warming could create conditions that favor extreme droughts.

"Clearly, much of West Africa is already on the edge of sustainability," says Overpeck, "and the situation could become much more dire in the future with increased global warming."

The findings emerged from sediments that lie at the bottom of Lake Bosumtwi in Ghana, deposits of soil and organic matter that contain annual bands of light (winter) and dark (summer) layers that stretch back more than three millennia.

"Lake Bosumtwi is really unique in that its one of the few locations in tropical West Africa where varves, annual sediment layers, are preserved. This allows us to look at changes in climate at very high resolution," said Shanahan, now an assistant professor at UT.

Added Overpeck, "The instrumental record of climate is just too short to understand how climate changes in Africa, and the lake sediments provide a fantastic way to put the short instrumental record--including the iconic Sahel Drought of the late 20th century--into a much longer perspective."

Oxygen (O) isotopes in calcium carbonate from the sediment provided a detailed record of dry and wet periods. Higher concentrations of common 16O indicated greater rainfall, while higher concentrations of slightly heavier, and therefore harder to evaporate, 18O indicated periods of drier conditions and drought.

"Support for our geochemical interpretations also came from evidence for past lake stands during drought periods, including a partially submerged forest, which grew during a century-long drought only a few hundred years ago when the lake was much lower," added Shanahan.

The researchers correlated the oxygen record from their sediment cores with concentrations of elements such as aluminum, potassium, silicon and iron that come from broken-down minerals in soil. The elements reveal drought conditions because during dry periods, the lake became smaller, exposing more soil and enabling it to wash in, and increasing the concentrations of the soil elements.

The resulting data sets show periods of dryness, particularly droughts in the 30-40 year range, that correlate to fluctuations in sea surface temperatures, a pattern called the Atlantic Multidecadal Oscillation (AMO). The oscillation has never been confirmed over long time periods, but computer simulations and several data sets, including tree-ring variations from sites around the West Atlantic, have hinted at the scenario.

"More and more, it's starting to look like the AMO is a big player affecting climate change around the Northern Hemisphere, including drought variability over Western Africa and western North America," noted Overpeck

No existing evidence for the AMO had the breadth of the 3,000-year column of lake sediments that the new study includes. While the new data also may reflect some patterns resulting from other sea surface temperature patterns, such as Atlantic Niños and even the familiar El Niño events in the Pacific, the AMO correlation is the strongest and holds promise as a leading cause of the West African droughts.

The lake's sediment record is also punctuated by less frequent, but much more severe, century-long drought events. Because of the size and duration of those events, their impact would have been much more severe than the multi-decade droughts linked to the AMO.

"What's disconcerting about this record is that it suggests the most recent drought was relatively minor in the context of the West African drought history," said Shanahan. "If we were to switch into one of these century-scale patterns of drought, it would be a lot more severe, and it would be very difficult for people to adjust to the change."

As global temperatures increase, the oceanic and atmospheric circulations that control the AMO may change. The new study suggests such changes could lead to conditions that in the past three millennia caused the most severe droughts, and because of global warming, the droughts could be even hotter when they return.

"To reduce uncertainties, current climate models need more data from both high- and low-latitude field work, and from periods that extend back well beyond the instrumental record," said Paul Filmer, the NSF program director who funded the recent study. "This project is a good example of how work in the tropics on sediment records provides more detailed insight into climate patterns that affect millions of people in a highly vulnerable area of the world."

Shanahan and Overpeck's University of Arizona co-authors are J. Warren Beck, Julia E. Cole and David Dettman. Researchers from Lamont-Doherty Earth Observatory in Palisades, N.Y., the University of Akron, Syracuse University, the University of Rhode Island, Nkrumah University of Science and Technology in Kumasi, Ghana, and the Ghanaian Geological Survey also participated.

This research was supported by NSF grants 0601998, 0401908, 0214525, 0096232 and IGERT award 0221594.

Joshua A. Chamot | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>