Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather forecast after stress: Stressed volunteers use different strategies and brain regions

08.08.2012
Learn to forecast the weather after stress
RUB psychologists compare learning achievement with and without stress
Stressed volunteers use different strategies and brain regions

Stressed and non-stressed persons use different brain regions and different strategies when learning. This has been reported by the cognitive psychologists PD Dr. Lars Schwabe and Professor Oliver Wolf from the Ruhr-Universität Bochum in the Journal of Neuroscience.

Non-stressed individuals applied a deliberate learning strategy, while stressed subjects relied more on their gut feeling. "These results demonstrate for the first time that stress has an influence on which of the different memory systems the brain turns on," said Lars Schwabe.

The experiment: Stress due to ice-water

The data from 59 subjects were included in the study. Half of the participants had to immerse one hand into ice-cold water for three minutes under video surveillance. This stressed the subjects, as hormone assays showed. The other participants had to immerse one of their hands just in warm water. Then both the stressed and non-stressed individuals completed the so-called weather prediction task.

The subjects looked at playing cards with different symbols and learned to predict which combinations of cards announced rain and which sunshine. Each combination of cards was associated with a certain probability of good or bad weather. People apply differently complex strategies in order to master the task. During the weather prediction task, the researchers recorded the brain activity with MRI.

Two routes to success

Both stressed and non-stressed subjects learned to predict the weather according to the symbols. Non-stressed participants focused on individual symbols and not on combinations of symbols. They consciously pursued a simple strategy. The MRI data showed that they activated a brain region in the medial temporal lobe - the hippocampus, which is important for long-term memory. Stressed subjects, on the other hand, applied a more complex strategy. They made their decisions based on the combination of symbols.

They did this, however, subconsciously, i.e. they were not able to formulate their strategy in words. The result of the brain scans was also accordingly: In the case of the stressed volunteers the so-called striatum in the mid-brain was activated - a brain region that is responsible for more unconscious learning. "Stress interferes with conscious, purposeful learning, which is dependent upon the hippocampus," concluded Lars Schwabe. "So that makes the brain use other resources. In the case of stress, the striatum controls behaviour - which saves the learning achievement."

Bibliographic record

L. Schwabe, O. Wolf (2012): Stress modulates the engagement of multiple memory systems in classification learning, Journal of Neuroscience, doi: 10.1523/JNEUROSCI.1484-12.2012

Further information

PD Dr. Lars Schwabe, Cognition Psychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-29324

Lars.Schwabe@rub.de

Click on

Earlier press releases on the subject
http://aktuell.ruhr-uni-bochum.de/pm2012/pm00253.html.en
Department of Cognition Psychology
http://www.cog.psy.ruhr-uni-bochum.de/index.html
Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://aktuell.ruhr-uni-bochum.de/pm2012/pm00253.html.en
http://www.cog.psy.ruhr-uni-bochum.de/index.html

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>