Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Ways to Mine Research May Lead to Scientific Breakthroughs

14.02.2011
The Internet has become not only a tool for disseminating knowledge through scientific publications, but it also has the potential to shape scientific research through expanding the field of metaknowledge—the study of knowledge itself.

The new possibilities for metaknowledge include developing a better understanding of science’s social context and the biases that can affect research findings and choices of research topics, according to an article published by University of Chicago researchers in the journal Science.

Pooling research-related information online can shed light on how scientists’ personal backgrounds or funding sources shape their research approaches, and could open up new fields of study, wrote James Evans, assistant professor in sociology at the University of Chicago, and Jacob Foster, a post-doctoral scholar at the University, in an analysis supported with a National Science Foundation grant.

“The computational production and consumption of metaknowledge will allow researchers and policymakers to leverage more scientific knowledge—explicit, implicit, contextual—in their efforts to advance science,” the two wrote in the Perspectives article “Metaknowledge,” published in the Feb. 11 issue of Science. Metaknowledge is essential in a digital era in which so many investigations are linked electronically, they point out.

An important new tool for metaknowledge researchers seeking previously hidden connections is natural language processing, one of the rapidly emerging fields of artificial intelligence. NLP permits machine reading, information extraction and automatic summarization.

Researchers at Google used computational content analysis to identify the emergence of influenza epidemics by identifying and tracking related Google searches. The process was faster than other techniques used by public health officials. These content analysis techniques complement the statistical techniques of meta-analysis, which typically incorporate data from many different studies in an effort to draw a larger conclusion about a research question, such as the influence of class size on student achievement.

For scientific research, meta-analysis can trace the connections between data and conclusions in ways that might not otherwise be noticed. For example, the availability of samples from the Southern Hemisphere related to continental drift has influenced the way in which geologists have made conclusions about plate tectonics.

Metaknowledge also has unveiled the possibility of “ghost theories” implicit assumptions that may undergird scientific conclusions, even when researchers do not acknowledge them. For example, psychologists frequently use college students as research subjects and accordingly publish papers based on the behavior of a group that may or may not be typical of the entire population. Scholars using traditional metaknowledge techniques found that 67 percent of the papers published in the Journal of Personality and Social Behavior were based on studies of undergraduates. The use of computation could accelerate and widen the discovery of such ghost theories.

Entrenched scientific ideas can develop when studies repeatedly find conclusions that support previous claims by well-known scholars and also when students of distinguished researchers go on to do their own work, which also reinforces previous claims. Both of those trends can be uncovered by scholars working in metaknowledge, Evans and Foster said.

Metaknowledge also helps scholars understand the role funding plays in research. “There is evidence from metaknowledge that embedding research in the private or public sector modulates its path,” they write. “Company projects tend to eschew dogma in an impatient hunt for commercial breakthroughs, leading to rapid but unsystematic accumulation of knowledge, whereas public research focuses on the careful accumulation of consistent results.”

The promise of metaknowedge is its capacity to steer researchers to new fields, they said.

“Metaknowledge could inform individual strategies about research investment, pointing out overgrazed fields where herding leads to diminishing returns as well as lush range where premature certainty has halted promising investigation,” Evans and Foster said.

William Harms | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>