Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways to detect and treat Alzheimer's disease

17.11.2010
Specific brain changes suggest new diagnostic markers and therapeutic targets

New studies identify brain changes in people with Alzheimer's disease. The results give researchers a greater understanding of the disease and may help at-risk individuals by improving early detection.

New animal research also shows a novel approach to Alzheimer's vaccine design that may avoid dangerous side effects. These new results were reported at Neuroscience 2010, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news on brain science and health.

About 5.3 million people have Alzheimer's disease, according to the Alzheimer's Association. With the aging baby boomer population, Alzheimer's will continue to affect more people worldwide. Better diagnostic techniques may help identify the disease at earlier, potentially more treatable stages.

Today's new findings show that:

People with Alzheimer's disease show structural changes in the caudate nucleus, a brain structure typically associated with movement disorders such as Parkinson's disease, suggesting that the disease produces broader damage in the brain than previously thought (Sarah Madsen, abstract 348.4, see attached summary).

People at risk for Alzheimer's disease exhibit a structural change in portions of the cerebral cortex, which is largely responsible for reasoning, memory and other "higher function" tasks. The findings may help identify those who would most benefit from early intervention (Sarah George, abstract 756.9, see attached summary).

A new vaccine, which was tested in mice, could protect against memory problems associated with Alzheimer's disease without potentially dangerous side effects. The vaccine targeted a non-human protein that may make it a safer alternative to previous vaccine approaches that caused inflammation in human clinical trials (Charles Glabe, PhD, abstract 725.6, see attached summary).

Too many small aggregates of a protein called tau in the brain can directly interfere with memory, according to new animal research. The findings are important because they suggest that tau may be a good target for developing therapies against Alzheimer's and related diseases (Ottavio Arancio, MD, PhD, abstract 527.8, see attached summary).

"Identifying those at risk for Alzheimer's and developing new treatments for nervous system disorders is a social imperative," said press conference moderator Sam Sisodia, PhD, of the University of Chicago, an expert on the cellular biology of proteins implicated in Alzheimer's disease. "These studies are evidence that we're making real progress to overcome this tragic epidemic."

This research was supported by national funding agencies, such as the National Institutes of Health, as well as private and philanthropic organizations.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>