Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waterways contribute to growth of potent greenhouse gas

21.12.2010
Nitrous oxide, a potent greenhouse gas, has increased by more than 20 percent over the last century, and nitrogen in waterways is fueling part of that growth, according to a Michigan State University study.

Based on this new study, the role of rivers and streams as a source of nitrous oxide to the atmosphere now appears to be twice as high as estimated by the Intergovernmental Panel on Climate Change, according to Stephen Hamilton, a professor at MSU's Kellogg Biological Station. The study appears in the current issue of the Proceedings of the Academy of Sciences.

The increased production of nitrous oxide in streams can be traced to the growth of nitrogen fertilizers and the cultivation of crops that return nitrogen to the soil naturally, both of which have the unintended consequence of increasing nitrogen in streams. Some of the nitrogen entering streams is converted to nitrous oxide.

While many studies have focused on how agricultural soils contribute to the production of this greenhouse gas, little attention has been given to nitrous oxide originating from streams and rivers, according to the study.

Nitrous oxide exists at low levels in the atmosphere, yet is thought to be responsible for 6 percent of climate warming and also contributes to stratospheric ozone destruction. It packs a much bigger punch – on a molecular level – than carbon dioxide, Hamilton said.

"Nitrous oxide is the leading human-caused threat to the atmospheric ozone layer, which protects the earth from the sun's harmful ultraviolet radiation," said Hamilton, who works with MSU's Long-Term Ecological Research program. "And on a per molecule basis, its global warming potential is 300-fold greater than carbon dioxide."

Hamilton was part of a team of researchers led by Jake Beaulieu of the Environmental Protection Agency and formerly with the University of Notre Dame. The team conducted experiments on 72 U.S. rivers and streams and ran their findings through a global river network model. They studied the production of nitrous oxide from the process of denitrification, in which bacteria convert nitrates to nitrogen gases.

"Even with more than 99 percent of denitrified nitrogen in streams and rivers being converted to the inert gas, dinitrogen, river networks still contribute to at least 10 percent of global anthropogenic nitrous oxide emissions," Hamilton said.

Reducing use of agricultural fertilizer and other sources of nitrogen are examples of how to decrease humanity's contribution to the growth of nitrous oxide produced in waterways, the study concluded.

Hamilton's research and work with LTER is funded in part by the National Science Foundation and the Michigan Agricultural Experimental Station.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

For MSU news on the Web, go to news.msu.edu. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: MSU Science TV Waterways carbon dioxide nitrous nitrous oxide

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>