Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waterways contribute to growth of potent greenhouse gas

21.12.2010
Nitrous oxide, a potent greenhouse gas, has increased by more than 20 percent over the last century, and nitrogen in waterways is fueling part of that growth, according to a Michigan State University study.

Based on this new study, the role of rivers and streams as a source of nitrous oxide to the atmosphere now appears to be twice as high as estimated by the Intergovernmental Panel on Climate Change, according to Stephen Hamilton, a professor at MSU's Kellogg Biological Station. The study appears in the current issue of the Proceedings of the Academy of Sciences.

The increased production of nitrous oxide in streams can be traced to the growth of nitrogen fertilizers and the cultivation of crops that return nitrogen to the soil naturally, both of which have the unintended consequence of increasing nitrogen in streams. Some of the nitrogen entering streams is converted to nitrous oxide.

While many studies have focused on how agricultural soils contribute to the production of this greenhouse gas, little attention has been given to nitrous oxide originating from streams and rivers, according to the study.

Nitrous oxide exists at low levels in the atmosphere, yet is thought to be responsible for 6 percent of climate warming and also contributes to stratospheric ozone destruction. It packs a much bigger punch – on a molecular level – than carbon dioxide, Hamilton said.

"Nitrous oxide is the leading human-caused threat to the atmospheric ozone layer, which protects the earth from the sun's harmful ultraviolet radiation," said Hamilton, who works with MSU's Long-Term Ecological Research program. "And on a per molecule basis, its global warming potential is 300-fold greater than carbon dioxide."

Hamilton was part of a team of researchers led by Jake Beaulieu of the Environmental Protection Agency and formerly with the University of Notre Dame. The team conducted experiments on 72 U.S. rivers and streams and ran their findings through a global river network model. They studied the production of nitrous oxide from the process of denitrification, in which bacteria convert nitrates to nitrogen gases.

"Even with more than 99 percent of denitrified nitrogen in streams and rivers being converted to the inert gas, dinitrogen, river networks still contribute to at least 10 percent of global anthropogenic nitrous oxide emissions," Hamilton said.

Reducing use of agricultural fertilizer and other sources of nitrogen are examples of how to decrease humanity's contribution to the growth of nitrous oxide produced in waterways, the study concluded.

Hamilton's research and work with LTER is funded in part by the National Science Foundation and the Michigan Agricultural Experimental Station.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

For MSU news on the Web, go to news.msu.edu. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: MSU Science TV Waterways carbon dioxide nitrous nitrous oxide

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>