Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming to shift heavy rainfall patterns in the UK

21.11.2012
It appears that it's not just us Brits who are fascinated with the UK weather.

A group of researchers from Germany has taken to investigating the potential changes in extreme rainfall patterns across the UK as a result of future global warming and has found that in some regions, the time of year when we see the heaviest rainfall is set to shift.

The study, published today, 21 November, in IOP Publishing's journal Environmental Research Letters, finds that between 2061 and 2100, the south-east of the country will likely experience its most extreme rainfall later in the year whereas the north-east will likely experience it earlier in the year.

The peak time of intense precipitation will shift from late summer to autumn in south-eastern regions and in north-western regions it will shift from December to November. There were no projected changes for other regions of the UK.

These shifts will coincide with times of the year when river catchments in those regions are at their maximum water capacity, meaning there would be an increased risk of flooding.

Lead author of the study, Anne Schindler, said: "In late autumn, the river catchments in the north-west reach their maximum capacity of water, as do the eastern catchments in winter. This is the time of the year when on average the most floods occur. Therefore, you can conclude that risk increases when the timing of the near field capacity and the probability for most extreme rainfall coincides."

The researchers, from the University of Giessen and GEOMAR Helmholtz Centre for Ocean Research Kiel, investigated the future changes using 12 climate model simulations for the periods 2021-2060 and 2061-2100, each forced with the Intergovernmental Panel on Climate Change's (IPCC) A1B scenario.

They also investigated whether the range of extreme rainfall throughout the year was set to get even greater with warming and did observe a projected increase in western regions of the UK; however, they make it clear that this finding is not robust and would need closer examination.

Schindler continued: "There are different mechanisms that influence extreme precipitation in the two regions we've highlighted. Extreme precipitation in the north-west is strongly influenced by westerly airflow and in the south-east the highest precipitation events are influenced by easterly flows from the North Sea.

"The shifts we have projected could be caused among other factors by changes in these large-scale circulation systems; however, this needs further investigation. For instance, we know there are deficits in the representation of rainfall in climate models and we do not know how the peak times vary from year to year without any man-made climate change."

The UK has a long history of monitoring rainfall and has a large number of rain gauges scattered across the country, providing a wealth of information and making it an ideal place to study.

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org
Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century.

2. The published version of the paper 'Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century' (Anne Schindler et al 2012 Environ. Res. Lett. 7 044029 ) will be freely available online from Wednesday 21 November.

Environmental Research Letters

3. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.
IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP.Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/.
The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policymakers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>