Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming to shift heavy rainfall patterns in the UK

21.11.2012
It appears that it's not just us Brits who are fascinated with the UK weather.

A group of researchers from Germany has taken to investigating the potential changes in extreme rainfall patterns across the UK as a result of future global warming and has found that in some regions, the time of year when we see the heaviest rainfall is set to shift.

The study, published today, 21 November, in IOP Publishing's journal Environmental Research Letters, finds that between 2061 and 2100, the south-east of the country will likely experience its most extreme rainfall later in the year whereas the north-east will likely experience it earlier in the year.

The peak time of intense precipitation will shift from late summer to autumn in south-eastern regions and in north-western regions it will shift from December to November. There were no projected changes for other regions of the UK.

These shifts will coincide with times of the year when river catchments in those regions are at their maximum water capacity, meaning there would be an increased risk of flooding.

Lead author of the study, Anne Schindler, said: "In late autumn, the river catchments in the north-west reach their maximum capacity of water, as do the eastern catchments in winter. This is the time of the year when on average the most floods occur. Therefore, you can conclude that risk increases when the timing of the near field capacity and the probability for most extreme rainfall coincides."

The researchers, from the University of Giessen and GEOMAR Helmholtz Centre for Ocean Research Kiel, investigated the future changes using 12 climate model simulations for the periods 2021-2060 and 2061-2100, each forced with the Intergovernmental Panel on Climate Change's (IPCC) A1B scenario.

They also investigated whether the range of extreme rainfall throughout the year was set to get even greater with warming and did observe a projected increase in western regions of the UK; however, they make it clear that this finding is not robust and would need closer examination.

Schindler continued: "There are different mechanisms that influence extreme precipitation in the two regions we've highlighted. Extreme precipitation in the north-west is strongly influenced by westerly airflow and in the south-east the highest precipitation events are influenced by easterly flows from the North Sea.

"The shifts we have projected could be caused among other factors by changes in these large-scale circulation systems; however, this needs further investigation. For instance, we know there are deficits in the representation of rainfall in climate models and we do not know how the peak times vary from year to year without any man-made climate change."

The UK has a long history of monitoring rainfall and has a large number of rain gauges scattered across the country, providing a wealth of information and making it an ideal place to study.

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org
Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century.

2. The published version of the paper 'Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century' (Anne Schindler et al 2012 Environ. Res. Lett. 7 044029 ) will be freely available online from Wednesday 21 November.

Environmental Research Letters

3. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.
IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP.Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/.
The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policymakers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>