Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming to shift heavy rainfall patterns in the UK

21.11.2012
It appears that it's not just us Brits who are fascinated with the UK weather.

A group of researchers from Germany has taken to investigating the potential changes in extreme rainfall patterns across the UK as a result of future global warming and has found that in some regions, the time of year when we see the heaviest rainfall is set to shift.

The study, published today, 21 November, in IOP Publishing's journal Environmental Research Letters, finds that between 2061 and 2100, the south-east of the country will likely experience its most extreme rainfall later in the year whereas the north-east will likely experience it earlier in the year.

The peak time of intense precipitation will shift from late summer to autumn in south-eastern regions and in north-western regions it will shift from December to November. There were no projected changes for other regions of the UK.

These shifts will coincide with times of the year when river catchments in those regions are at their maximum water capacity, meaning there would be an increased risk of flooding.

Lead author of the study, Anne Schindler, said: "In late autumn, the river catchments in the north-west reach their maximum capacity of water, as do the eastern catchments in winter. This is the time of the year when on average the most floods occur. Therefore, you can conclude that risk increases when the timing of the near field capacity and the probability for most extreme rainfall coincides."

The researchers, from the University of Giessen and GEOMAR Helmholtz Centre for Ocean Research Kiel, investigated the future changes using 12 climate model simulations for the periods 2021-2060 and 2061-2100, each forced with the Intergovernmental Panel on Climate Change's (IPCC) A1B scenario.

They also investigated whether the range of extreme rainfall throughout the year was set to get even greater with warming and did observe a projected increase in western regions of the UK; however, they make it clear that this finding is not robust and would need closer examination.

Schindler continued: "There are different mechanisms that influence extreme precipitation in the two regions we've highlighted. Extreme precipitation in the north-west is strongly influenced by westerly airflow and in the south-east the highest precipitation events are influenced by easterly flows from the North Sea.

"The shifts we have projected could be caused among other factors by changes in these large-scale circulation systems; however, this needs further investigation. For instance, we know there are deficits in the representation of rainfall in climate models and we do not know how the peak times vary from year to year without any man-made climate change."

The UK has a long history of monitoring rainfall and has a large number of rain gauges scattered across the country, providing a wealth of information and making it an ideal place to study.

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop:
Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org
Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century.

2. The published version of the paper 'Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century' (Anne Schindler et al 2012 Environ. Res. Lett. 7 044029 ) will be freely available online from Wednesday 21 November.

Environmental Research Letters

3. Environmental Research Letters is an open access journal that covers all of environmental science, providing a coherent and integrated approach including research articles, perspectives and editorials.
IOP Publishing

4. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP.Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to http://ioppublishing.org/.
The Institute of Physics

5. The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policymakers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>