Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer January Temperatures May Favor Expansion of Cryptococcus gattii in Northwest North America

05.05.2010
Computer modeling predicts where potentially lethal fungus may spread

Researchers in British Columbia, Canada, have used a technique known as ecological niche modeling to identify likely areas where a potentially lethal fungus could spread next. Cryptococcus gattii, which can cause life-threatening infections of the lungs and central nervous system when inhaled, infects humans as well as a broad range of wild and domestic animals.

In a study published in the May 2010 issue of the peer-reviewed journal Environmental Health Perspectives, Canadian researchers found that the optimal ecological niche areas of the fungus in British Columbia are limited to the central and southeastern coasts of Vancouver Island, the Gulf Islands, the Sunshine Coast, and the Vancouver Lower Mainland. Although this represents less than 2 percent of the province’s land area, two-thirds of British Columbia’s population lives there, the authors noted. They hypothesized that the San Juan Islands and Puget Trough of Washington State and the Willamette Valley of Oregon may become endemic areas for the fungus, whose spores are dispersed by the wind, animals, and humans.

The study is important because C. gattii is expanding into new ecological areas, making its spread difficult to predict. Once thought to be limited to tropical and subtropical regions, including Australia, Africa, Italy, South America, and Southern California, the fungus now is found in the temperate rainforests of the Pacific Northwest. Reports elsewhere suggest the fungus may have been exported from its native habitat on commercially valuable trees such as eucalyptus and several ornamental species.

C. gattii appeared on Vancouver Island in 1999, and by the end of 2008 it had sickened more than 240 humans and 360 animals, giving British Columbia one of the highest incidences and largest multispecies outbreaks of cryptococcosis in the world, the study recounted. Approximately 25 new human cases of cryptococcosis are now identified each year in British Columbia.

Because field sampling for the presence of a pathogen across a province of nearly 945,000 square kilometers (about 365,000 square miles) is not feasible, the authors theorized that a more practical solution would be to use ecological niche modeling, which analyzes data collected through human and animal surveillance and environmental sampling. For the model they built, which outlined where the fungus is currently established and forecast where it might spread, the researchers reported a predictive accuracy exceeding 98 percent.

The optimal niche for C. gattii is characterized by elevations averaging 100 meters above sea level, daily January average temperatures higher than 0°C (32°F), and location within biogeoclimatic zones populated by specific types of trees, according to the authors, who include Sunny Mak, Brian Klinkenberg, Karen Bartlett, and Murray Fyfe.

“Ecological niche modeling, traditionally developed for biodiversity and conservation research, recently has been employed by public health to predict the geographic risk of infectious diseases,” Mak explains. “This is a new tool that we have to inform strategies for disease surveillance, environmental sampling, and public and physician awareness of Cryptococcus gattii infections.”

The full research article, “Ecological Niche Modeling of Cryptococcus gattii in British Columbia, Canada,” is available on the EHP website at http://ehponline.org/article/info:doi/10.1289/ehp.0901448.

EHP is published by the National Institute of Environmental Health Sciences (NIEHS), part of the U.S. Department of Health and Human Services. EHP is an open-access journal. More information is available online at http://www.ehponline.org. Brogan & Partners Convergence Marketing handles marketing and public relations for the publication and is responsible for creation and distribution of this press release.

| Newswise Science News
Further information:
http://www.ehponline.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>