Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer January Temperatures May Favor Expansion of Cryptococcus gattii in Northwest North America

05.05.2010
Computer modeling predicts where potentially lethal fungus may spread

Researchers in British Columbia, Canada, have used a technique known as ecological niche modeling to identify likely areas where a potentially lethal fungus could spread next. Cryptococcus gattii, which can cause life-threatening infections of the lungs and central nervous system when inhaled, infects humans as well as a broad range of wild and domestic animals.

In a study published in the May 2010 issue of the peer-reviewed journal Environmental Health Perspectives, Canadian researchers found that the optimal ecological niche areas of the fungus in British Columbia are limited to the central and southeastern coasts of Vancouver Island, the Gulf Islands, the Sunshine Coast, and the Vancouver Lower Mainland. Although this represents less than 2 percent of the province’s land area, two-thirds of British Columbia’s population lives there, the authors noted. They hypothesized that the San Juan Islands and Puget Trough of Washington State and the Willamette Valley of Oregon may become endemic areas for the fungus, whose spores are dispersed by the wind, animals, and humans.

The study is important because C. gattii is expanding into new ecological areas, making its spread difficult to predict. Once thought to be limited to tropical and subtropical regions, including Australia, Africa, Italy, South America, and Southern California, the fungus now is found in the temperate rainforests of the Pacific Northwest. Reports elsewhere suggest the fungus may have been exported from its native habitat on commercially valuable trees such as eucalyptus and several ornamental species.

C. gattii appeared on Vancouver Island in 1999, and by the end of 2008 it had sickened more than 240 humans and 360 animals, giving British Columbia one of the highest incidences and largest multispecies outbreaks of cryptococcosis in the world, the study recounted. Approximately 25 new human cases of cryptococcosis are now identified each year in British Columbia.

Because field sampling for the presence of a pathogen across a province of nearly 945,000 square kilometers (about 365,000 square miles) is not feasible, the authors theorized that a more practical solution would be to use ecological niche modeling, which analyzes data collected through human and animal surveillance and environmental sampling. For the model they built, which outlined where the fungus is currently established and forecast where it might spread, the researchers reported a predictive accuracy exceeding 98 percent.

The optimal niche for C. gattii is characterized by elevations averaging 100 meters above sea level, daily January average temperatures higher than 0°C (32°F), and location within biogeoclimatic zones populated by specific types of trees, according to the authors, who include Sunny Mak, Brian Klinkenberg, Karen Bartlett, and Murray Fyfe.

“Ecological niche modeling, traditionally developed for biodiversity and conservation research, recently has been employed by public health to predict the geographic risk of infectious diseases,” Mak explains. “This is a new tool that we have to inform strategies for disease surveillance, environmental sampling, and public and physician awareness of Cryptococcus gattii infections.”

The full research article, “Ecological Niche Modeling of Cryptococcus gattii in British Columbia, Canada,” is available on the EHP website at http://ehponline.org/article/info:doi/10.1289/ehp.0901448.

EHP is published by the National Institute of Environmental Health Sciences (NIEHS), part of the U.S. Department of Health and Human Services. EHP is an open-access journal. More information is available online at http://www.ehponline.org. Brogan & Partners Convergence Marketing handles marketing and public relations for the publication and is responsible for creation and distribution of this press release.

| Newswise Science News
Further information:
http://www.ehponline.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>