Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking to School Could Reduce Stress Reactivity in Children and May Curb Risk of Heart Disease

11.08.2010
A simple morning walk to school could reduce stress reactivity in children during the school day, curbing increases in heart rate and blood pressure that can lead to cardiovascular disease later in life, according to a new University at Buffalo study.

UB researchers report in the August 2010 issue of Medicine & Science in Sports & Exercise that children who took a simulated walk to school later experienced smaller elevations in systolic blood pressure, heart rate and perceived stress while taking a short exam than children who had gotten a simulated ride to school.

Cardiovascular reactivity -- including changes in heart rate and blood pressure due to stress -- is associated with the beginnings of cardiovascular disease in children, and atherosclerosis -- the dangerous build-up of cholesterol, calcium, fat and other substances in artery walls -- in adults.

"The cardiovascular disease process begins in childhood, so if we can find some way of stopping or slowing that process, that would provide an important health benefit," says James Roemmich, UB associate professor of pediatrics and exercise and nutrition science and senior investigator on the study, which he completed with graduate students Maya Lambiase and Heather Barry. "We know that physical activity has a protective effect on the development of cardiovascular disease, and one way it may be doing so is by reducing stress reactivity."

Roemmich says because it's not known how long the protective effect of a bout of exercise lasts, parents and educators should promote active play time throughout the day.

"If it only lasts a couple of hours, then it would be most beneficial if a child walked or biked to school, then had recess during school, as well as a break at lunch, so they had opportunities for physical activity throughout the day," Roemmich says. "This would put them in a constantly protective state against stressors that they're incurring during the school day, whether that be taking an exam, trying to fit in with peers or speaking in front of classmates."

Roemmich says his study is the first to show that moderate-intensity exercise can reduce children's cardiovascular reactivity during later, stressful activities. The research builds on his earlier work, which demonstrated that higher-intensity interval exercise could afford similar protection in children.

In the more recent investigation, Roemmich and his team examined a group of 20 boys and 20 girls, all Caucasian and ages 10-14. All visited the Behavioral Medicine Research Laboratory in the morning. To simulate a ride to school, half sat in a comfortable chair and watched a 10-minute slide show of images of a suburban neighborhood, ending with an image of a suburban school. The other half performed a one-mile walk on a treadmill at a self-selected pace, wearing a book bag containing 10 percent of their body weight. As they walked, the images of the suburban neighborhood were projected onto a screen.

Following a 20-minute rest period after completing the passive and active commutes, all children took a Stroop test, which asks subjects to correctly identify the color of color names printed in the wrong color (the word "green" printed in blue ink, for instance). On average, during this activity, heart rate increased by about three beats per minute in children who walked, compared with about 11 beats per minute in children who "rode" to school. Similarly, the rise in systolic blood pressure was more than three times higher, and the change in perceived stress about twice as high, for the passive commuters.

"The perception of a stressor as a threat is the beginning of the stress reactivity process, so if you can dampen that initial perception, then you reduce the magnitude of the fight-or-flight response," Roemmich says. "This results in lower heart rate and blood pressure responses to the stressor. Exercise helped dampen even the initial response."

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>