Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking to School Could Reduce Stress Reactivity in Children and May Curb Risk of Heart Disease

11.08.2010
A simple morning walk to school could reduce stress reactivity in children during the school day, curbing increases in heart rate and blood pressure that can lead to cardiovascular disease later in life, according to a new University at Buffalo study.

UB researchers report in the August 2010 issue of Medicine & Science in Sports & Exercise that children who took a simulated walk to school later experienced smaller elevations in systolic blood pressure, heart rate and perceived stress while taking a short exam than children who had gotten a simulated ride to school.

Cardiovascular reactivity -- including changes in heart rate and blood pressure due to stress -- is associated with the beginnings of cardiovascular disease in children, and atherosclerosis -- the dangerous build-up of cholesterol, calcium, fat and other substances in artery walls -- in adults.

"The cardiovascular disease process begins in childhood, so if we can find some way of stopping or slowing that process, that would provide an important health benefit," says James Roemmich, UB associate professor of pediatrics and exercise and nutrition science and senior investigator on the study, which he completed with graduate students Maya Lambiase and Heather Barry. "We know that physical activity has a protective effect on the development of cardiovascular disease, and one way it may be doing so is by reducing stress reactivity."

Roemmich says because it's not known how long the protective effect of a bout of exercise lasts, parents and educators should promote active play time throughout the day.

"If it only lasts a couple of hours, then it would be most beneficial if a child walked or biked to school, then had recess during school, as well as a break at lunch, so they had opportunities for physical activity throughout the day," Roemmich says. "This would put them in a constantly protective state against stressors that they're incurring during the school day, whether that be taking an exam, trying to fit in with peers or speaking in front of classmates."

Roemmich says his study is the first to show that moderate-intensity exercise can reduce children's cardiovascular reactivity during later, stressful activities. The research builds on his earlier work, which demonstrated that higher-intensity interval exercise could afford similar protection in children.

In the more recent investigation, Roemmich and his team examined a group of 20 boys and 20 girls, all Caucasian and ages 10-14. All visited the Behavioral Medicine Research Laboratory in the morning. To simulate a ride to school, half sat in a comfortable chair and watched a 10-minute slide show of images of a suburban neighborhood, ending with an image of a suburban school. The other half performed a one-mile walk on a treadmill at a self-selected pace, wearing a book bag containing 10 percent of their body weight. As they walked, the images of the suburban neighborhood were projected onto a screen.

Following a 20-minute rest period after completing the passive and active commutes, all children took a Stroop test, which asks subjects to correctly identify the color of color names printed in the wrong color (the word "green" printed in blue ink, for instance). On average, during this activity, heart rate increased by about three beats per minute in children who walked, compared with about 11 beats per minute in children who "rode" to school. Similarly, the rise in systolic blood pressure was more than three times higher, and the change in perceived stress about twice as high, for the passive commuters.

"The perception of a stressor as a threat is the beginning of the stress reactivity process, so if you can dampen that initial perception, then you reduce the magnitude of the fight-or-flight response," Roemmich says. "This results in lower heart rate and blood pressure responses to the stressor. Exercise helped dampen even the initial response."

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>