Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VTT: One third of car fuel consumption is due to friction loss

12.01.2012
Fuel consumption and emissions can be reduced with new technology

No less than one third of a car’s fuel consumption is spent in overcoming friction, and this friction loss has a direct impact on both fuel consumption and emissions.

However, new technology can reduce friction by anything from 10% to 80% in various components of a car, according to a joint study by VTT Technical Research Centre of Finland and Argonne National Laboratory (ANL) in USA. It should thus be possible to reduce car’s fuel consumption and emissions by 18% within the next 5 to 10 years and up to 61% within 15 to 25 years.

There are 612 million cars in the world today. The average car clocks up about 13,000 km per year, and in the meantime burns 340 litres of fuel just to overcome friction, costing the driver EUR 510 per year.

Of the energy output of fuel in a car engine, 33% is spent in exhaust, 29% in cooling and 38% in mechanical energy, of which friction losses account for 33% and air resistance for 5%. By comparison, an electric car has only half the friction loss of that of a car with a conventional internal combustion engine.

Annual friction loss in an average car worldwide amounts to 11,860 MJ: of this, 35% is spent in overcoming rolling resistance in the wheels, 35% in the engine itself, 15% in the gearbox and 15% in braking. With current technology, only 21.5% of the energy output of the fuel is used to actually move the car; the rest is wasted.

Worldwide savings with new technology
A recent VTT and ANL study shows that friction in cars can be reduced with new technologies such as new surface coatings, surface textures, lubricant additives, low-viscosity lubricants, ionic liquids and low-friction tyres inflated to pressures higher than normal.

Friction can be reduced by 10% to 50% using new surface technologies such as diamond-like carbon materials and nanocomposites. Laser texturing can be employed to etch a microtopography on the surface of the material to guide the lubricant flow and internal pressures so as to reduce friction by 25% to 50% and fuel consumption by 4%. Ionic liquids are made up of electrically charged molecules that repel one another, enabling a further 25% to 50% reduction in friction.

In 2009, a total of 208,000 million litres of fuel was burned in cars worldwide just to overcome friction; this amounts to 7.3 million TJ (terajoules) of energy. Theoretically, introducing the best current technological solutions in all of the world’s cars could save EUR 348,000 million per year; the best scientifically proven solutions known today could save EUR 576,000 million per year, and the best solutions to emerge over the next 10 years could save EUR 659,000 million per year.

Realistically, though, over a period of 5 to 10 years of enhanced action and product development measures could be expected to enable savings of 117,000 million litres in fuel consumption per year, representing an 18% reduction from the present level. Furthermore, in realistic terms, carbon dioxide emissions could be expected to decrease by 290 million tonnes per year and financial savings to amount to EUR 174,000 million per year in the short term.

Drivers can influence fuel consumption
A driver can significantly influence the fuel consumption of his or her car. A reduction of 10% in driving speed, e.g. from 110 km/h to 100 km/h, translates into a 16% saving in fuel consumption. Slower speeds also allow for higher tyre pressures; an increase from 2 bar to 2.5 bar can translate into a 3% saving in fuel consumption.

VTT and ANL calculated friction loss in cars worldwide using a method that incorporated total crude oil consumption and fuel consumption of cars, the energy consumption of an average car, and the energy that an average car uses to overcome friction.

Friction losses were accounted for in the subsystems of a car – tyres, engine, gearbox, brakes – and also in its components, such as gears, bearings, gaskets and pistons. The friction losses caused at friction points and lubrication points were also considered.

The study was conducted at the Metal Products and Mechanical Engineering strategic competence cluster in the DEMAPP programme, co-ordinated by FIMECC Oy, where practical solutions for minimising friction loss are also being developed. The study was funded by the Finnish Funding Agency for Technology and Innovation (Tekes), VTT and FIMECC Oy, and the Argonne National Laboratory, Department of Energy (Chicago, USA).

The recent research report on friction loss in cars and the potential for reducing energy consumption and carbon dioxide emissions was published in the Tribology International scientific journal. The article can be accessed here: http://dx.doi.org/10.1016/j.triboint.2011.11.022

For more information, please contact:
VTT Technical Resarch Centre of Finland
Research Professor
Kenneth Holmberg
Tel. +358 40 544 2285
kenneth.holmberg@vtt.fi
Argonne National Laboratory, USA
Argonne Distinguished Fellow
Ali Erdemir
Tel. +1 630 853 1363
erdemir@anl.gov
Further information on VTT:
Olli Ernvall, Senior Vice President, Communications
Tel. 358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is a leading multitechnological applied research organization in Northern Europe. VTT creates new technology and science-based innovations in co-operation with domestic and foreign partners. VTT’s turnover is EUR 290 million and its personnel totals 3,100.

Olli Ernvall | VTT Info
Further information:
http://www.vtt.fi

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>