Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vitamins stored in bathrooms, kitchens may become less effective

03.03.2010
High humidity present in bathrooms and kitchens could be degrading the vitamins and health supplements stored in those rooms, even if the lids are on tight, a Purdue University study shows.

Lisa Mauer, an associate professor of food science, said that crystalline substances - including vitamin C, some vitamin B forms and other dietary supplements - are prone to a process called deliquescence, in which humidity causes a water-soluble solid to dissolve. Keeping those supplements away from warm, humid environments can help ensure their effectiveness.

"You might see salt or sugar start to cake in the summer, start to form clumps, and that's a sign of deliquescence," said Mauer, whose findings were published in the early online version of the Journal of Agricultural and Food Chemistry. "You can also get chemical instabilities, which are a little more problematic if you're consuming a dietary supplement with vitamin C for that vitamin C content."

Kitchen salt, sugar and powdered drink mixes commonly cake, Mauer said, making their measurement more difficult but not rendering them useless. Chemical changes become more than a nuisance in vitamins and dietary supplements, however.

"If you get some moisture present or ingredients dissolve, they'll decrease the quality and shelf life of the product and decrease the nutrient delivery," Mauer said. "You can get complete loss of the ingredients. It depends on the conditions. It depends on the formulations. Within a very short time - in a week - you can get complete loss of vitamin C in some products that have deliquesced."

Bathrooms and kitchens can increase the detrimental effects because of spikes in humidity in those rooms. And Mauer said storing vitamins or supplements in containers with lids doesn't always help.

"Opening and closing a package will change the atmosphere in it. If you open and close a package in a bathroom, you add a little bit of humidity and moisture each time," Mauer said. "The humidity in your kitchen or bathroom can cycle up quite high, depending on how long of a shower you take, for example, and can get higher than 98 percent."

Mauer used a gravimetric moisture sorption balance to determine the humidities at which substances would deliquesce. The samples spiked in weight at the deliquescence point because moisture was being adsorbed, meaning humidity was condensing on the solid and then the solid dissolved.

Different crystalline substances deliquesce at different humidities, Mauer said. For example, at room temperature, sodium ascorbate would deliquesce at 86 percent humidity, ascorbic acid at 98 percent humidity and fructose at 62 percent. Some ingredient blends deliquesce in as low as 30 percent humidity. Different forms of ingredients, such as the two forms of vitamin C studied (ascorbic acid and sodium ascorbate), have different deliquescence points, different sensitivity to moisture and different degradation rates. At high enough humidities, samples dissolved completely.

Once humidity or temperature is brought back down, the product will solidify, Mauer said, but the damage has been done.

"Any chemical changes or degradation that have occurred before resolidification don't reverse. You don't regain a vitamin C content after the product resolidifies or is moved to a lower humidity," she said. "The chemical changes we've observed are not reversible."

This information could be important to anyone using vitamin-containing products, ranging from the consumer to the food and dietary supplement industry and ingredient suppliers. Storing products in dry conditions, below their deliquescence relative humidities, can avoid unwanted ingredient loss.

Consumers could notice liquid in vitamin containers, but Mauer said another sign of nutrient degradation is brown spots, especially on children's vitamins. Mauer suggested discarding any dietary supplement that is showing signs of moisture uptake or browning.

"They're not necessarily unsafe, but why give a vitamin to a kid if it doesn't have the vitamin content you're hoping to give them?" Mauer said. "You're just giving them candy at that point with a high sugar content."

The U.S. Department of Agriculture and the Lilly Endowment Inc. funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Lisa Mauer, 765-494-9111, mauer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>