Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How visual cues help us understand bodily motion

08.07.2011
"Our visual system is tuned towards perceiving other people. We spend so much time doing that—seeing who they are, what they are doing, what they intend to do," says psychology professor Nikolaus F. Troje of Queen's University in Kingston, Ontario.

This process is called biological motion perception, and humans are so good at it that even a few dots on a screen representing the major joints of a body are enough to retrieve all the information we need—as long as they move.

But what role does motion play in that process? Does the visual system use it only to connect the dots to create a coherent, or "global," structure? Troje and his colleagues—Masahiro Hirai and Daniel R. Saunders at Queen's, and Dorita H. F. Chang, now at the University of Birmingham, UK—investigated this question in a new study, to be published in an upcoming issue of Psychological Science, a journal of the Association for Psychological Science.

They presented their participants with computer-generated stimuli showing 11 light points representing the shoulder, hip, elbows, wrists, knees, and ankles of a person walking, as on a treadmill. After a two-second display, the observers had to indicate which direction they believed the walker was facing.

This is an easy task, and the participants performed it almost without fail—even though the point-light walker was masked with 100 randomly placed additional dots. But they were also able to do it if the global structure of the body was entirely disrupted by randomly scrambling the 11 dots. "The local motion of individual dots contained enough information about the walker's facing direction," says Troje.

But when the whole thing was turned upside-down, the participants could no longer discern which way the figure was walking. Why? Says Troje: "The visual system uses the information contained in these local dot movements—mainly the ones of the feet—only when it is validated by additional properties that do not in themselves carry any information about facing direction"—in this case the proper vertical orientation, feet on the bottom, head on top.

An observer can't tell the facing direction of a stationary upright figure. But put the local motion together with an upright position, even mix up and mask all the light points. And "direction discrimination of these 'scrambled' walkers is almost as good as with structurally coherent walkers," Troje says.

Why is the visual system so acute even when the shape of a figure is totally broken down? To survive, we have to be able "to detect the presence of a living being in the visual environment—regardless of whether it is a fellow human, a potentially dangerous predator, or even a prey animal," says Troje. "For that purpose, we need a detection mechanism that is independent of the particular shape of an animal."

Parsing these effects can help us understand—and appreciate—our extraordinary perceptual assets. "It tells us how sophisticated our visual system is in using information about the structure, the physics, and the regularities of the visual world," he says.

For more information about this study, please contact: Nikolaus F. Troje at troje@queensu.ca.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Body configuration modulates the usage of local cues to direction in biological motion perception" and access to other Psychological Science research findings, please contact Divya Menon at 202-293-9300 or dmenon@psychologicalscience.org.

Divya Menon | EurekAlert!
Further information:
http://www.psychologicalscience.org

Further reports about: Psychological Science Science TV local motion visual system

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>