Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech expands sports concussion-risk studies to include hockey and baseball

29.01.2013
The Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences (http://www.sbes.vt.edu/) is expanding its ground-breaking research of testing football helmets to reduce the number of concussions to now include hockey, baseball, softball, and lacrosse.

The five-year plan will see the Virginia Tech research center, headed by Stefan Duma (http://www.sbes.vt.edu/duma.php), rate helmets worn by hockey, baseball, softball, and lacrosse athletes in their ability to lessen the likelihood of a concussion resulting from a violent head impact.

Ratings on hockey helmets are expected in fall 2013, followed by youth football in 2015, and then baseball, softball, and lacrosse in 2016. During that time, all ratings for adult and youth football helmets will continually be updated and released to the public.

The expansion into helmeted sports other than football comes on the heels of new research that allows for better prediction of sports-related concussions resulting from linear and rotational head accelerations. These accelerations result from head impacts that cause the head to translate and twist about the neck. The new research is published this month in the Annals of Biomedical Engineering (http://www.editorialmanager.com/abme/).

The new research is being funded by Virginia Tech, the National Highway Traffic Safety Administration, the National Institutes of Health, and the Institute for Critical Technology and Applied Science (http://www.ictas.vt.edu/) at Virginia Tech.

New ratings for football helmets will include data for linear and rotational accelerations starting in 2015, said Duma, professor of biomedical engineering and department head of the Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences. Serving as lead author on the research paper is Steven Rowson (http://www.cib.vt.edu/people/bios/faculty_bios/bio_rowson.html), assistant professor of biomedical engineering at Virginia Tech.

“All head impacts result in both linear and rotational accelerations, and this publication provides the foundation for our research to address both accelerations relative to reducing the risk of concussion,” said Duma. “Our goal with the five-year plan is to provide manufacturers with a schedule detailing when we will release helmet ratings for each sport.”

The helmet rating system is based on more than a decade of data collection by Duma and his research staff, and utilizes the STAR, or Summation of Tests for the Analysis of Risk, formula that assesses the ability of football helmets to reduce concussion risk. Sport-specific testing methodologies will be added to the website that lists the rated helmets prior to the initial release of each sport’s helmets ratings.

Using data collected from more than 63,000 head impacts during a period of 10 years, Duma and Rowson related linear and rotational head acceleration to the probability of sustaining a concussion in the form of an injury risk function.

“This new analysis utilizes data measured from 62 concussions sustained by high school, college, and professional football players,” said Rowson. “We use these data to determine the best method to predict concussions when we test helmets in our laboratory.” In their research paper, the researchers write, “With as many as 3.8 million sports-related concussions occurring annually in the United States and research suggesting possible long term neurodegenerative processes resulting from repetitive concussions, reducing the incidence of concussion in sports has become a public health priority.”

Indeed, long-term, repetitive injuries that can cripple or eventually kill years after play have prompted dozens of headlines in major media outlets and several national studies, and even President Obama to recently weigh in on the subject. Dozens of former NFL players are suing the league over injuries sustained during years of play, and headlines were made this summer when former football great Alex Karras died at age 77 from various ailments, several allegedly said to be caused by years of hard hits.

In studying football-related injuries during the past decade, Duma and his research team have used on-field real-time sensors installed in the helmets of hundreds of adult and youth football players to study injuries, as well as a mechanical lab-tested 5-star rating system to track and grade commercially sold helmets.

The former can help indicate head injuries that require immediate attention while on the field of play. The latter has provided the only independent biomechanical data for consumers to make helmet purchasing decisions, Duma said.

Duma’s goal is not to end the sport of football, but make it safer while still keep the same expected adrenaline rush and action for players, and viewers.

“It is important to note that no helmet can prevent all concussions. The most effective strategies to reduce concussions in sports involve modifying league rules and player technique to limit exposure to head impacts,” Duma said.

“Beyond this, head impacts are a given in sport. Our research focuses on identifying helmets that reduce concussion risk so that athletes can make informed decisions based on independent data when purchasing equipment, which in turn, incentivizes helmet manufacturers to design helmets that better reduce head acceleration.”

Steven Mackay | EurekAlert!
Further information:
http://www.sbes.vt.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>