Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech expands sports concussion-risk studies to include hockey and baseball

29.01.2013
The Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences (http://www.sbes.vt.edu/) is expanding its ground-breaking research of testing football helmets to reduce the number of concussions to now include hockey, baseball, softball, and lacrosse.

The five-year plan will see the Virginia Tech research center, headed by Stefan Duma (http://www.sbes.vt.edu/duma.php), rate helmets worn by hockey, baseball, softball, and lacrosse athletes in their ability to lessen the likelihood of a concussion resulting from a violent head impact.

Ratings on hockey helmets are expected in fall 2013, followed by youth football in 2015, and then baseball, softball, and lacrosse in 2016. During that time, all ratings for adult and youth football helmets will continually be updated and released to the public.

The expansion into helmeted sports other than football comes on the heels of new research that allows for better prediction of sports-related concussions resulting from linear and rotational head accelerations. These accelerations result from head impacts that cause the head to translate and twist about the neck. The new research is published this month in the Annals of Biomedical Engineering (http://www.editorialmanager.com/abme/).

The new research is being funded by Virginia Tech, the National Highway Traffic Safety Administration, the National Institutes of Health, and the Institute for Critical Technology and Applied Science (http://www.ictas.vt.edu/) at Virginia Tech.

New ratings for football helmets will include data for linear and rotational accelerations starting in 2015, said Duma, professor of biomedical engineering and department head of the Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences. Serving as lead author on the research paper is Steven Rowson (http://www.cib.vt.edu/people/bios/faculty_bios/bio_rowson.html), assistant professor of biomedical engineering at Virginia Tech.

“All head impacts result in both linear and rotational accelerations, and this publication provides the foundation for our research to address both accelerations relative to reducing the risk of concussion,” said Duma. “Our goal with the five-year plan is to provide manufacturers with a schedule detailing when we will release helmet ratings for each sport.”

The helmet rating system is based on more than a decade of data collection by Duma and his research staff, and utilizes the STAR, or Summation of Tests for the Analysis of Risk, formula that assesses the ability of football helmets to reduce concussion risk. Sport-specific testing methodologies will be added to the website that lists the rated helmets prior to the initial release of each sport’s helmets ratings.

Using data collected from more than 63,000 head impacts during a period of 10 years, Duma and Rowson related linear and rotational head acceleration to the probability of sustaining a concussion in the form of an injury risk function.

“This new analysis utilizes data measured from 62 concussions sustained by high school, college, and professional football players,” said Rowson. “We use these data to determine the best method to predict concussions when we test helmets in our laboratory.” In their research paper, the researchers write, “With as many as 3.8 million sports-related concussions occurring annually in the United States and research suggesting possible long term neurodegenerative processes resulting from repetitive concussions, reducing the incidence of concussion in sports has become a public health priority.”

Indeed, long-term, repetitive injuries that can cripple or eventually kill years after play have prompted dozens of headlines in major media outlets and several national studies, and even President Obama to recently weigh in on the subject. Dozens of former NFL players are suing the league over injuries sustained during years of play, and headlines were made this summer when former football great Alex Karras died at age 77 from various ailments, several allegedly said to be caused by years of hard hits.

In studying football-related injuries during the past decade, Duma and his research team have used on-field real-time sensors installed in the helmets of hundreds of adult and youth football players to study injuries, as well as a mechanical lab-tested 5-star rating system to track and grade commercially sold helmets.

The former can help indicate head injuries that require immediate attention while on the field of play. The latter has provided the only independent biomechanical data for consumers to make helmet purchasing decisions, Duma said.

Duma’s goal is not to end the sport of football, but make it safer while still keep the same expected adrenaline rush and action for players, and viewers.

“It is important to note that no helmet can prevent all concussions. The most effective strategies to reduce concussions in sports involve modifying league rules and player technique to limit exposure to head impacts,” Duma said.

“Beyond this, head impacts are a given in sport. Our research focuses on identifying helmets that reduce concussion risk so that athletes can make informed decisions based on independent data when purchasing equipment, which in turn, incentivizes helmet manufacturers to design helmets that better reduce head acceleration.”

Steven Mackay | EurekAlert!
Further information:
http://www.sbes.vt.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>