Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral Reactivation a Likely Link Between Stress and Heart Disease

23.01.2013
A new study could provide the link that scientists have been looking for to confirm that reactivation of a latent herpes virus is a cause of some heart problems.

Looking at blood samples from 299 heart patients, researchers at Ohio State University found that those who had suffered a heart attack were the most likely to have inflammatory proteins circulating in their blood compared to patients with less acute symptoms. And having more of one of these proteins in the blood was linked to the presence of antibodies that signal a latent Epstein-Barr virus (EBV) reactivation.

To date, these relationships have been hard to find because scientists have been unable to detect evidence of a virus in diseased areas of the cardiovascular system.

In this study, however, the researchers instead looked for antibodies against a protein that can be produced even when only partial or incomplete reactivation of Epstein-Barr EBV occurs. And when this antibody was detected, it was associated with immune system malfunctions connected to inflammation – a known risk factor for heart disease.

Identifying a solid link between a reactivated virus and heart disease is important because of the prevalence of EBV, a human herpes virus that causes infectious mononucleosis and several different types of tumors. An estimated 95 percent of Americans have been infected with the virus by adulthood, and once a person is infected, the virus remains dormant in the body. It can be reactivated without causing symptoms of illness, but reactivation has potential to create chaos in the immune system.

Stress is a known predictor of reactivation of EBV, meaning virus reactivation could be a mechanism by which stress leads to chronic inflammation and eventually cardiovascular diseases.

“In the big picture, this may help clarify the role these viruses play in heart disease,” said co-author Ron Glaser, director of Ohio State’s Institute for Behavioral Medicine Institute (IBMR) and professor of molecular virology, immunology and medical genetics. “And it makes sense, because we know that some viral proteins can induce inflammation, affecting the lining of blood vessels, so that inflammation is in the right place to function as a significant risk factor for heart disease.”

The research is published in the online journal PLOS ONE.

The patients whose blood was sampled for the study were undergoing angioplasty to clear narrow arteries. Researchers tested their blood for the presence of numerous cytokines – proteins that signal the presence of inflammation – as well as for antibody to an EBV encoded viral protein called dUTPase. This protein is produced early in the process of viral reactivation, and may be present even if signs of the virus itself cannot be detected.

Co-author Marshall Williams, professor of molecular virology, immunology and medical genetics, uses a highly sensitive method to detect these antibodies, and hopes to develop an equally effective technique that could be put to use in clinical laboratories.

Patients who had had acute myocardial infarction – a heart attack – were the most likely to have the highest measures of two cytokines, interleukin-6 (IL-6) and intercellular adhesion molecule 1 (ICAM-1) in their blood compared to patients whose main symptom was chest pain.

Researchers also identified a strong relationship between circulating concentrations of ICAM-1 and detectable antibodies to EBV dUTPase. In fact, the highest values of ICAM-1 were found in patients who had had a heart attack and were positive for the dUTPase protein. A similar trend was seen with IL-6, but the finding could have been attributed to chance.

“This study provides the essential clinical corroboration of this mechanism showing enhanced levels of proinflammatory proteins in the blood of patients with acute coronary events and detectable levels of the EBV-related protein,” said Philip Binkley, professor of cardiovascular medicine and epidemiology at Ohio State and a lead author of the study.

Additional co-authors on this work include Glen Cooke and Amanda Lesinski of the Division of Cardiovascular Medicine; Min Chen and Bryon Laskowski of the IBMR; James Waldman of the Department of Pathology; and Maria-Eugenia Ariza and Deborah Knight of the Department of Molecular Virology, Immunology and Medical Genetics. Co-author Mackenzie Taylor, Binkley and Cooke also are investigators in the Davis Heart and Lung Research Institute.

Contact: Philip Binkley, (614) 293-8963; Philip.Binkley@osumc.edu or Ron Glaser, (614) 293-0178; Ronald.Glaser@osumc.edu

Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu

Philip Binkley | EurekAlert!
Further information:
http://www.osumc.edu
http://researchnews.osu.edu/archive/ebvheart2.htm

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>