Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral 'parasites' may play a key role in the maintenance of cell pluripotency

28.04.2014

In a study published in Nature Genetics, scientists from the RIKEN Center for Life Science Technologies in Japan, in collaboration with the RIKEN Center for Integrative Medical Sciences, the University of Copenhagen and the Joint Genome Institute (Walnut Creek, California) have discovered that "jumping DNA" known as retrotransposons—viral elements incorporated into the human genome—may play a key role in the maintenance of pluripotency, the ability of stem cells to differentiate into many different types of body cells.

This story is part of a fundamental rethinking taking place in genomic science. In 2009, members of the FANTOM Consortium project reported that an important fraction of mammalian transcriptomes—meaning the RNA transcribed from the genome—consists of transcripts derived from retrotransposon elements, vestiges of ancient retroviruses from the same family as HIV that have in the past been considered to only parasite the genome. However, the biological function of these "jumping DNA"–associated RNA transcripts remained unknown.

In the current study on embryonic stem (ES) cells and induced pluripotent stem (iPS) cells using four high-throughput methods including cap analysis gene expression (CAGE), the researchers found that thousands of transcripts in stem cells that have not yet been annotated are transcribed from retrotransposons, presumably to elicit nuclear functions.

These transcripts were found to be expressed in stem cells, but not differentiated cells. Importantly, the work showed that several of these transcripts are involved in the maintenance of pluripotency, since degrading several of them using RNA interference caused iPS cells to lose their pluripotency and differentiate.

... more about:
»HIV »RIKEN »RNA »Science »genes »genomic »mammalian »methods

These transcripts appear to have been recruited, surprisingly both in the human and mouse genome, where they are used to maintain the pluripotency of stem cells. Somehow, organisms including humans appear to have recruited viral elements into their genome in a way that helps to maintain the pluripotency of stem cells that allow them to regenerate. Why this is so remains a mystery for future investigation.

Although the results of the study cannot be put directly into application in regenerative medicine, knowing that retrotransposon elements are essential in the transcriptional control of iPS and ES cells is an essential clue for solving the puzzle of how to create better types of cells in future regenerative medicine studies.

"Our work has just begun to unravel the scale of unexpected functions carried out by retrotransposons and their derived transcripts in stem cell biology. We were extremely surprised to learn from our data that what was once considered genetic 'junk', namely ancient retroviruses that were thought to just parasite the genome, are in reality symbiotic elements that work closely with other genes to maintain iPS and ES cells in their undifferentiated state.

This is quite different from the image given by textbooks that these genomic elements are junk," explains Dr. Piero Carninci, senior investigator of the study.

###

The study was funded by a JSPS (Japan Society for Promotion of Science) grant for Next Generation World-Leading Researchers.

Jens Wilkinson | Eurek Alert!

Further reports about: HIV RIKEN RNA Science genes genomic mammalian methods

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>