Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Violent Video Games Reduce Brain Response to Violence and Increase Aggressive Behavior

Parental moderation encouraged for children

Scientists have known for years that playing violent video games causes players to become more aggressive. The findings of a new University of Missouri (MU) study provide one explanation for why this occurs: the brains of violent video game players become less responsive to violence, and this diminished brain response predicts an increase in aggression.

Bruce Bartholow, associate professor of psychology at MU, found that violent video games increase aggression by monitoring participant brain activity.

“Many researchers have believed that becoming desensitized to violence leads to increased human aggression. Until our study, however, this causal association had never been demonstrated experimentally,” said Bruce Bartholow, associate professor of psychology in the MU College of Arts and Science.

During the study, 70 young adult participants were randomly assigned to play either a nonviolent or a violent video game for 25 minutes. Immediately afterwards, the researchers measured brain responses as participants viewed a series of neutral photos, such as a man on a bike, and violent photos, such as a man holding a gun in another man’s mouth. Finally, participants competed against an opponent in a task that allowed them to give their opponent a controllable blast of loud noise. The level of noise blast the participants set for their opponent was the measure of aggression.

The researchers found that participants who played one of several popular violent games, such as “Call of Duty,” “Hitman,” “Killzone” and “Grand Theft Auto,” set louder noise blasts for their opponents during the competitive task – that is, they were more aggressive – than participants who played a nonviolent game. In addition, for participants that had not played many violent video games before completing the study, playing a violent game in the lab caused a reduced brain response to the photos of violence – an indicator of desensitization. Moreover, this reduced brain response predicted participants’ aggression levels: the smaller the brain response to violent photos, the more aggressive participants were. Participants who had already spent a lot of time playing violent video games before the study showed small brain response to the violent photos, regardless of which type of game they played in the lab.

“The fact that video game exposure did not affect the brain activity of participants who already had been highly exposed to violent games is interesting and suggests a number of possibilities,” Bartholow said. “It could be that those individuals are already so desensitized to violence from habitually playing violent video games that an additional exposure in the lab has very little effect on their brain responses. There also could be an unmeasured factor that causes both a preference for violent video games and a smaller brain response to violence. In either case, there are additional measures to consider.”

Bartholow said that future research should focus on ways to moderate media violence effects, especially among individuals who are habitually exposed. He cites surveys that indicate that the average elementary school child spends more than 40 hours a week playing video games – more than any other activity besides sleeping. As young children spend more time with video games than any other forms of media, the researchers say children could become accustomed to violent behavior as their brains are forming.

“More than any other media, these video games encourage active participation in violence,” said Bartholow. “From a psychological perspective, video games are excellent teaching tools because they reward players for engaging in certain types of behavior. Unfortunately, in many popular video games, the behavior is violence.”

Other authors in the study include Christopher Engelhardt, graduate student in the MU Department of Psychological Sciences, and researchers from The Ohio State University and VU University of Amsterdam in the Netherlands. The journal article, “This Is Your Brain on Violent Video Games: Neural Desensitization to Violence Predicts Increased Aggression Following Violent Video Game Exposure,” will be published in a forthcoming edition of the Journal of Experimental Social Psychology.

Steven Adams | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>