Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Violent video games affect biological systems

13.11.2008
An article published electronically in the scientific journal "Acta Paediatrica", describes how heart rate and sleep in boys are affected by violent video games. Researchers from Stockholm University, Uppsala University and Karolinska Institutet in Sweden have worked together with this study.

In the study boys (12-15) were asked to play two different video games at home in the evening. The boys' heart rate was registered, among other parameters. It turned out that the heart rate variability was affected to a higher degree when the boys were playing games focusing on violence compared with games without violent features.

Differences in heart rate variability were registered both while the boys were playing the games and when they were sleeping that night. The boys themselves did not feel that they had slept poorly after having played violent games.

The results show that the autonomous nerve system, and thereby central physiological systems in the body, can be affected when you play violent games without your being aware of it. It is too early to draw conclusions about what the long-term significance of this sort of influence might be. What is important about this study is that the researchers have found a way, on the one hand, to study what happens physiologically when you play video or computer games and, on the other hand, to discern the effects of various types of games.

It is hoped that it will be possible to use the method to enhance our knowledge of what mechanisms could lie behind the association that has previously been suggested between violent games and aggressive behavior.

The researchers, from Stockholm University, Uppsala University and Karolinska Institutet in Sweden, also hope the method can be used to study how individuals are affected by playing often and for long periods, which can take the form of so-called game addiction. This research on the effects of video games is funded by the Swedish Council for Working Life and Social Research (FAS) and the Oscar and Maria Ekman Philanthropic Fund.

For further information please contact:
Frank Lindblad, professor, Stress Research Institute, Stockholm University. Employed at the Department of Neuroscience, Uppsala University. Phone: +46 (0)8-5537 8914 (project director)
Malena Ivarsson, doctoral candidate, Stress Research Institute, Stockholm University. Phone: +46 (0)8-5537 8909 (especially regarding questions about how the study was performed)
Torbjörn Åkerstedt, professor, Stress Research Institute, Stockholm University.
Phone: +46 (0)8-5537 8928 (especially for questions about the impact on sleep)
Martin Anderson, chief physician, Department of Clinical Physiology, Stockholm South General Hospital and Karolinska Institutet.

Phone: +46 (0)8-616 35 27 (especially for questions about the method for analyzing how heart rate is affected)

Maria Sandqvist | alfa
Further information:
http://www.vr.se
http://www3.interscience.wiley.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>