Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video games could dramatically streamline education research

19.09.2014

“Seeking educational curriculum researchers. Humans need not apply.”

A Washington State University professor has figured out a dramatically easier and more cost-effective way to do research on science curriculum in the classroom – and it could include playing video games.


Richard Lamb, right, discusses artificial neural networks with WSU College of Education colleague Andy Cavagnetto.

Called “computational modeling,” it involves a computer “learning” student behavior and then “thinking” as students would. Rich Lamb (http://education.wsu.edu/

directory/faculty/rlamb), who teaches science education at WSU’s College of Education, said the process could revolutionize the way educational research is done.

Lamb’s research has just been published in Computers & Education journal. The article describes how computers examine student responses to science tasks – such as comparing liquid volumes – and thereafter mimic the way students think.

“Traditionally, we’d be confined to a classroom to study student learning for virtually every potential theory we have about science education and curriculum implementation,” Lamb said. “But now, instead of taking a shotgun approach, we can test the initial interventions on a computer and see which ones make the most sense to then study in the classroom.”

So in-person research becomes more finely targeted and requires fewer student subjects. It requires less time from researchers and costs less money.

“In the current model of research, we go into a classroom and spend months observing, giving tests and trying to see if changes to a specific model work and how to best implement them,” Lamb said. “It will still be necessary for researchers to go into the classroom; hopefully that never goes away. This just gives us more flexibility.”

Video games method

An artificial neural network is basically artificial intelligence that simulates the human brain. Lamb and his fellow researchers, including college colleagues Tariq Akmal and Kathy Baldwin, use an artificial neural network they named the Student Task and Cognition Model.

Students were given tasks to complete in an electronic game. The tasks were scientific in nature and required students to make a choice. The researchers used statistical techniques to track everything and assign each task as a success or failure.

“The computer is able to see what constitutes success, but it’s also able to see how students approach science,” Lamb said.

Because the computer is learning an approach to science, rather than just how to do a specific task, it will later try to solve a different problem the same way a student might.

“I’ve enjoyed this research in particular because it’s opening new understandings of learning and new avenues of teaching and assessment as a result,” said David Vallett, one of Lamb’s co-researchers from the University of Nevada Las Vegas. “It’s a novel yet practical blend of cognitive science and education.”

Testing multiple models at once

Lamb said most entertainment video games have the same characteristics as educational videos games. So long as it asks a singular task of the students, any game would suffice – Halo, Call of Duty, Mario Kart and more.

“The computer is learning to solve novel or new problems, which means we can test different educational interventions before ever getting to a classroom,” he said.
He said those initial tests will not only tell researchers if a specific educational model will work, but will give a specific percentage of success.

“Even with a large research team, it’s usually too difficult to test more than one intervention at a time,” he said. “Now we can run multiple interventions, choose the one that looks like it will work the best and then just test that one.”

Significant cost savings

And that will help the bottom line.

“For me to get 100,000 students, teachers to administer tests, professors doing research and all the rest, we could easily look at about $3.5 million,” Lamb said. “We can now get those 100,000 students for the cost of running software off a computer.”

It’s definitely a novel approach. And it is sure to get a few raised eyebrows. But Vallett said he wouldn’t expect any less from Lamb.

“Rich is an enthusiastically creative researcher and statistician,” Vallett said. “That creative spark is what sets him apart from most of the field; he’s not satisfied with merely adding a sliver of understanding to our existing knowledge of a topic.”

Contacts:
Rich Lamb, WSU College of Education, 509-335-5025, richard.lamb@wsu.edu
C. Brandon Chapman, WSU College of Education communications, 509-335-6850, b.chapman@wsu.edu

Rich Lamb | idw - Informationsdienst Wissenschaft
Further information:
https://news.wsu.edu/2014/09/18/video-games-could-dramatically-streamline-educational-research/#.VBvvaGEcTcs

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>