Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Video games could dramatically streamline education research


“Seeking educational curriculum researchers. Humans need not apply.”

A Washington State University professor has figured out a dramatically easier and more cost-effective way to do research on science curriculum in the classroom – and it could include playing video games.

Richard Lamb, right, discusses artificial neural networks with WSU College of Education colleague Andy Cavagnetto.

Called “computational modeling,” it involves a computer “learning” student behavior and then “thinking” as students would. Rich Lamb (

directory/faculty/rlamb), who teaches science education at WSU’s College of Education, said the process could revolutionize the way educational research is done.

Lamb’s research has just been published in Computers & Education journal. The article describes how computers examine student responses to science tasks – such as comparing liquid volumes – and thereafter mimic the way students think.

“Traditionally, we’d be confined to a classroom to study student learning for virtually every potential theory we have about science education and curriculum implementation,” Lamb said. “But now, instead of taking a shotgun approach, we can test the initial interventions on a computer and see which ones make the most sense to then study in the classroom.”

So in-person research becomes more finely targeted and requires fewer student subjects. It requires less time from researchers and costs less money.

“In the current model of research, we go into a classroom and spend months observing, giving tests and trying to see if changes to a specific model work and how to best implement them,” Lamb said. “It will still be necessary for researchers to go into the classroom; hopefully that never goes away. This just gives us more flexibility.”

Video games method

An artificial neural network is basically artificial intelligence that simulates the human brain. Lamb and his fellow researchers, including college colleagues Tariq Akmal and Kathy Baldwin, use an artificial neural network they named the Student Task and Cognition Model.

Students were given tasks to complete in an electronic game. The tasks were scientific in nature and required students to make a choice. The researchers used statistical techniques to track everything and assign each task as a success or failure.

“The computer is able to see what constitutes success, but it’s also able to see how students approach science,” Lamb said.

Because the computer is learning an approach to science, rather than just how to do a specific task, it will later try to solve a different problem the same way a student might.

“I’ve enjoyed this research in particular because it’s opening new understandings of learning and new avenues of teaching and assessment as a result,” said David Vallett, one of Lamb’s co-researchers from the University of Nevada Las Vegas. “It’s a novel yet practical blend of cognitive science and education.”

Testing multiple models at once

Lamb said most entertainment video games have the same characteristics as educational videos games. So long as it asks a singular task of the students, any game would suffice – Halo, Call of Duty, Mario Kart and more.

“The computer is learning to solve novel or new problems, which means we can test different educational interventions before ever getting to a classroom,” he said.
He said those initial tests will not only tell researchers if a specific educational model will work, but will give a specific percentage of success.

“Even with a large research team, it’s usually too difficult to test more than one intervention at a time,” he said. “Now we can run multiple interventions, choose the one that looks like it will work the best and then just test that one.”

Significant cost savings

And that will help the bottom line.

“For me to get 100,000 students, teachers to administer tests, professors doing research and all the rest, we could easily look at about $3.5 million,” Lamb said. “We can now get those 100,000 students for the cost of running software off a computer.”

It’s definitely a novel approach. And it is sure to get a few raised eyebrows. But Vallett said he wouldn’t expect any less from Lamb.

“Rich is an enthusiastically creative researcher and statistician,” Vallett said. “That creative spark is what sets him apart from most of the field; he’s not satisfied with merely adding a sliver of understanding to our existing knowledge of a topic.”

Rich Lamb, WSU College of Education, 509-335-5025,
C. Brandon Chapman, WSU College of Education communications, 509-335-6850,

Rich Lamb | idw - Informationsdienst Wissenschaft
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>