Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most vertebrates -- including humans -- descended from ancestor with sixth sense

12.10.2011
People experience the world through five senses but sharks, paddlefishes and certain other aquatic vertebrates have a sixth sense: They can detect weak electrical fields in the water and use this information to detect prey, communicate and orient themselves.

A study in the Oct. 11 issue of Nature Communications that caps more than 25 years of work finds that the vast majority of vertebrates – some 30,000 species of land animals (including humans) and a roughly equal number of ray-finned fishes – descended from a common ancestor that had a well-developed electroreceptive system.

This ancestor was probably a predatory marine fish with good eyesight, jaws and teeth and a lateral line system for detecting water movements, visible as a stripe along the flank of most fishes. It lived around 500 million years ago. The vast majority of the approximately 65,000 living vertebrate species are its descendants.

"This study caps questions in developmental and evolutionary biology, popularly called 'evo-devo,' that I've been interested in for 35 years," said Willy Bemis, Cornell professor of ecology and evolutionary biology and a senior author of the paper. Melinda Modrell, a neuroscientist at the University of Cambridge who did the molecular analysis, is the paper's lead author.

Hundreds of millions of years ago, there was a major split in the evolutionary tree of vertebrates. One lineage led to the ray-finned fishes, or actinopterygians, and the other to lobe-finned fishes, or sarcopterygians; the latter gave rise to land vertebrates, Bemis explained. Some land vertebrates, including such salamanders as the Mexican axolotl, have electroreception and, until now, offered the best-studied model for early development of this sensory system. As part of changes related to terrestrial life, the lineage leading to reptiles, birds and mammals lost electrosense as well as the lateral line.

Some ray-finned fishes – including paddlefishes and sturgeons – retained these receptors in the skin of their heads. With as many as 70,000 electroreceptors in its paddle-shaped snout and skin of the head, the North American paddlefish has the most extensive electrosensory array of any living animal, Bemis said.

Until now, it was unclear whether these organs in different groups were evolutionarily and developmentally the same.

Using the Mexican axolotl as a model to represent the evolutionary lineage leading to land animals, and paddlefish as a model for the branch leading to ray-finned fishes, the researchers found that electrosensors develop in precisely the same pattern from the same embryonic tissue in the developing skin, confirming that this is an ancient sensory system.

The researchers also found that the electrosensory organs develop immediately adjacent to the lateral line, providing compelling evidence "that these two sensory systems share a common evolutionary heritage," said Bemis.

Researchers can now build a picture of what the common ancestor of these two lineages looked like and better link the sensory worlds of living and fossil animals, Bemis said.

Co-authors include Glenn Northcutt, a world expert on vertebrate neuroanatomy based at the Scripps Institution of Oceanography; and Claire Baker at the University of Cambridge, whose lab contributed molecular analyses.

The study was funded by the Biotechnology and Biological Sciences Research Council in the United Kingdom, National Institutes of Health, National Science Foundation, Whitehall Foundation and Tontogany Creek Fund.

Contact Joe Schwartz for information about Cornell's TV and radio studios.

Joe Schwartz | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>