Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Most vertebrates -- including humans -- descended from ancestor with sixth sense

People experience the world through five senses but sharks, paddlefishes and certain other aquatic vertebrates have a sixth sense: They can detect weak electrical fields in the water and use this information to detect prey, communicate and orient themselves.

A study in the Oct. 11 issue of Nature Communications that caps more than 25 years of work finds that the vast majority of vertebrates – some 30,000 species of land animals (including humans) and a roughly equal number of ray-finned fishes – descended from a common ancestor that had a well-developed electroreceptive system.

This ancestor was probably a predatory marine fish with good eyesight, jaws and teeth and a lateral line system for detecting water movements, visible as a stripe along the flank of most fishes. It lived around 500 million years ago. The vast majority of the approximately 65,000 living vertebrate species are its descendants.

"This study caps questions in developmental and evolutionary biology, popularly called 'evo-devo,' that I've been interested in for 35 years," said Willy Bemis, Cornell professor of ecology and evolutionary biology and a senior author of the paper. Melinda Modrell, a neuroscientist at the University of Cambridge who did the molecular analysis, is the paper's lead author.

Hundreds of millions of years ago, there was a major split in the evolutionary tree of vertebrates. One lineage led to the ray-finned fishes, or actinopterygians, and the other to lobe-finned fishes, or sarcopterygians; the latter gave rise to land vertebrates, Bemis explained. Some land vertebrates, including such salamanders as the Mexican axolotl, have electroreception and, until now, offered the best-studied model for early development of this sensory system. As part of changes related to terrestrial life, the lineage leading to reptiles, birds and mammals lost electrosense as well as the lateral line.

Some ray-finned fishes – including paddlefishes and sturgeons – retained these receptors in the skin of their heads. With as many as 70,000 electroreceptors in its paddle-shaped snout and skin of the head, the North American paddlefish has the most extensive electrosensory array of any living animal, Bemis said.

Until now, it was unclear whether these organs in different groups were evolutionarily and developmentally the same.

Using the Mexican axolotl as a model to represent the evolutionary lineage leading to land animals, and paddlefish as a model for the branch leading to ray-finned fishes, the researchers found that electrosensors develop in precisely the same pattern from the same embryonic tissue in the developing skin, confirming that this is an ancient sensory system.

The researchers also found that the electrosensory organs develop immediately adjacent to the lateral line, providing compelling evidence "that these two sensory systems share a common evolutionary heritage," said Bemis.

Researchers can now build a picture of what the common ancestor of these two lineages looked like and better link the sensory worlds of living and fossil animals, Bemis said.

Co-authors include Glenn Northcutt, a world expert on vertebrate neuroanatomy based at the Scripps Institution of Oceanography; and Claire Baker at the University of Cambridge, whose lab contributed molecular analyses.

The study was funded by the Biotechnology and Biological Sciences Research Council in the United Kingdom, National Institutes of Health, National Science Foundation, Whitehall Foundation and Tontogany Creek Fund.

Contact Joe Schwartz for information about Cornell's TV and radio studios.

Joe Schwartz | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>