Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New VARI Findings Next Step to Growing Drought-Resistant Plants

29.09.2010
Study could help produce alternative to genetically-engineered crops to combat global food shortages

New findings from Van Andel Research Institute (VARI) scientists could lead to environmentally-friendly sprays that help plants survive drought and other stresses in harsh environments to combat global food shortages. The study is a follow-up to findings published in Nature last year that were named among the top breakthroughs of 2009 by Science magazine.

“I think that the work established the methodologies and feasibilities of finding cheap and environmentally benign chemicals for agricultural application to improve the water use efficiency and drought tolerance of crops,” said Jian-Kang Zhu, Professor of Botany and Presidential Chair of Botany & Plant Sciences at the University of California, Riverside. “The work also provides a better understanding of ABA receptor function, which will help efforts in the genetic engineering of hardier crops.”

In a 2009 study published in Nature, VARI scientists determined precisely how the plant hormone abscisic acid (ABA) works at the molecular level to help plants respond to environmental stresses such as drought and cold. These findings could help engineer crops that thrive in harsh environments.

One of ABA’s effects is to cause plant pores to close when plants are stressed so that they can retain water. In the new study, researchers identified several synthetic compounds that fit well with ABA’s many receptors, or cellular “docking stations,” to have the same effect. By finding compounds that can close these pores, researchers’ findings could lead to sprays that use a plant’s natural defenses to help it survive harsh environmental conditions.

“Sprays would allow plants to be much more adaptable than if we genetically engineered them,” said Karsten Melcher, Ph.D., one of the lead authors of the study and research scientist in the VARI Laboratory of Structural Biology led by Distinguished Scientific Investigator H. Eric Xu. “You could spray plants to close the pores only when drought or other harsh conditions threaten the plant.”

The lab originally began studying ABA because a proposed ABA receptor was reported to be a member of a group of proteins that the lab studies, which are targeted by more than 50% of all drugs on the market. It was later found that the receptor was not part of this group of proteins, but Xu’s lab continued its’ studies.

The findings appear in Nature Structural & Molecular Biology alongside a companion paper from authors Francis C. Peterson (first author), Brian Volkman, Davin R. Jensen, and Joshua J. Weiner from the Medical College of Wisconsin, Sean Cutler, Sang-Youl Park and Chia-An Chang from University of California, Riverside (UCR), and Sethe Burgie, Craig A. Bingman, and George Phillips, Jr., from the University of Wisconsin-Madison. A third parallel study has also been reported by Dr. Nieng Yan’s group in the Journal of Biological Chemistry.

“Last year Dr. Xu and his lab offered the plant community the long-awaited key to creating drought-resistant crops,” said VARI President and Research Director Dr. Jeffrey Trent. “Only a few short months later, and they already have taken huge strides further toward the ultimate goal of helping combat world hunger.”

This publication was made possible in part by Grant Numbers DK066202 (10%), and GM087413 (10%) from the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of General Medical Sciences respectively. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Heart Lung and Blood Institute.

(LS-CAT) is in part funded by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (grant 085P1000817). Use of the Advanced Photon Source was supported by the Office of Science of the U. S. Department of Energy.

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute (TGen) of Phoenix, Arizona ( www.tgen.org ).

Tim Hawkins | EurekAlert!
Further information:
http://www.tgen.org
http://www.vai.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>