Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Van Andel Research Institute Findings Provide More Complete Picture of Kidney Cancer

Two recent studies distinguish cancer subtypes and provide promising new drug targets

Two recent studies by Van Andel Research Institute scientists are providing a foundation for a more complete understanding of distinct kidney cancer subtypes, which could pave the way for better treatments.

In a study published in Cancer Cell led by Kyle Furge, Ph.D. and Aikseng Ooi, Ph.D., researchers provide a more complete understanding of the biology of Type 2 papillary renal cell carcinoma (PRCC2), an aggressive type of kidney cancer with no effective treatment, which lays the foundation for the development of effective treatment strategies.

Despite obvious morphological, genetic, and clinical differences, hereditary PRCC2 is thought to share similar pathway deregulation due to genetic mutation with its counterpart, clear cell renal cell carcinoma (CCRCC), a subtype that accounts for 75% of all kidney cancers and that, unlike PRCC2, responds favorably to drugs targeting vascular endothelial growth factor (VEGF), a signal protein produced by cells that stimulate blood vessel formation.

The study, which included international collaboration with researchers from the National Cancer Centre Singapore, Génétique Oncologique EPFE-INSERM U753 and Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre and Institut de Cancérologie Gustave Roussy, Michigan State University, Northwestern Memorial Hospital, Cleveland Clinic, Singapore General Hospital, and The Wistar Institute, identified deregulation of the KEAP1-NRF2 signaling pathway as a factor that distinguishes PRCC2 from CCRCC, but links both hereditary and sporadic PRCC2.

In another study published in Cancer Research, led by Yan Ding, Ph.D., and Bin Tean Teh, Ph.D. and carried out in collaboration with the National Cancer Centre Singapore, researchers integrated gene expression profiling and RNAi screening data to identify genes involved in CCRCC development and progression.

In recent years, several molecularly targeted therapies such as sunitinib, sorafenib, and pazopanib, which target the receptor tyrosine kinases of VEGF have been approved for CCRCC. Although these therapies significantly extend overall survival, nearly all patients with advanced CCRCC eventually succumb to the disease.

Gene set enrichment analysis indicated that cell-cycle-related genes, in particular PLK1, were associated with disease aggressiveness. Further, the association of PLK1 in both disease aggression and in vitro growth prompted researchers to examine the effects of a small-molecule inhibitor in CCRCC cell lines. Their findings highlight PLK1 as a promising potential therapeutic target for CCRCC.

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>