Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Van Andel Research Institute Findings Provide More Complete Picture of Kidney Cancer

30.12.2011
Two recent studies distinguish cancer subtypes and provide promising new drug targets

Two recent studies by Van Andel Research Institute scientists are providing a foundation for a more complete understanding of distinct kidney cancer subtypes, which could pave the way for better treatments.

In a study published in Cancer Cell led by Kyle Furge, Ph.D. and Aikseng Ooi, Ph.D., researchers provide a more complete understanding of the biology of Type 2 papillary renal cell carcinoma (PRCC2), an aggressive type of kidney cancer with no effective treatment, which lays the foundation for the development of effective treatment strategies.

Despite obvious morphological, genetic, and clinical differences, hereditary PRCC2 is thought to share similar pathway deregulation due to genetic mutation with its counterpart, clear cell renal cell carcinoma (CCRCC), a subtype that accounts for 75% of all kidney cancers and that, unlike PRCC2, responds favorably to drugs targeting vascular endothelial growth factor (VEGF), a signal protein produced by cells that stimulate blood vessel formation.

The study, which included international collaboration with researchers from the National Cancer Centre Singapore, Génétique Oncologique EPFE-INSERM U753 and Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre and Institut de Cancérologie Gustave Roussy, Michigan State University, Northwestern Memorial Hospital, Cleveland Clinic, Singapore General Hospital, and The Wistar Institute, identified deregulation of the KEAP1-NRF2 signaling pathway as a factor that distinguishes PRCC2 from CCRCC, but links both hereditary and sporadic PRCC2.

In another study published in Cancer Research, led by Yan Ding, Ph.D., and Bin Tean Teh, Ph.D. and carried out in collaboration with the National Cancer Centre Singapore, researchers integrated gene expression profiling and RNAi screening data to identify genes involved in CCRCC development and progression.

In recent years, several molecularly targeted therapies such as sunitinib, sorafenib, and pazopanib, which target the receptor tyrosine kinases of VEGF have been approved for CCRCC. Although these therapies significantly extend overall survival, nearly all patients with advanced CCRCC eventually succumb to the disease.

Gene set enrichment analysis indicated that cell-cycle-related genes, in particular PLK1, were associated with disease aggressiveness. Further, the association of PLK1 in both disease aggression and in vitro growth prompted researchers to examine the effects of a small-molecule inhibitor in CCRCC cell lines. Their findings highlight PLK1 as a promising potential therapeutic target for CCRCC.

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>