Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccination of 70 percent of US population could control swine flu pandemic

14.09.2009
An aggressive vaccination program that first targets children and ultimately reaches 70 percent of the U.S. population would mitigate pandemic influenza H1N1 that is expected this fall, according to computer modeling and analysis of observational studies conducted by researchers at the Vaccine and Infectious Disease Institute (VIDI) at Fred Hutchinson Cancer Research Center.

Published in the Sept. 11 issue of Science Express, the early online edition of the journal Science, the study – which includes the first estimate of the transmissibility of pandemic H1N1 influenza in schools – recommends that 70 percent of children ages 6 months to 18 years be vaccinated first, as well as members of high-risk groups as identified by the U.S. Centers for Disease Control and Prevention.

These groups include health care and emergency services personnel and those at risk for medical complications from pandemic H1N1 illness such as persons with chronic health disorders and compromised immune systems. Two doses of vaccine, delivered three weeks apart, may be needed to confer adequate protection to the virus.

Corresponding author Ira Longini, Ph.D., and colleagues emphasized that a combination of factors – the availability of an effective vaccine to protect people against pandemic H1N1, coupled with the timing of the outbreak – will determine how quickly the epidemic can be slowed. The researchers estimate that to bring the epidemic under control aggressive vaccination of the population must begin at least a month before the epidemic peak, concentrating on children as much as possible.

"Our estimates of pandemic H1N1 in households, schools and in the community places this virus in the higher range of transmissibility," said Yang Yang, Ph.D., first author of the paper and a staff scientist at VIDI.

Although social distancing and the use of antiviral medicines can be partially effective at slowing pandemic flu spread, vaccination remains the most effective means of pandemic influenza control, the authors conclude. From a cost effectiveness measure, vaccination remains the most effective, while closing schools and other social gathering places is the least cost effective.

Vaccination increases population-level immunity and lowers the effective reproductive number of the virus, which results in two main effects: slowing the spread of infection and reducing the height of the epidemic peak; and reducing the overall illness attack rate, hospitalizations and mortality.

Other key findings in the study:

The current pattern of pandemic spread is most likely to be similar to the Asian influenza A (H2N2) pandemic of 1957-58. Substantial spread was expected to begin in early September with the epidemic peaking in mid to late October.

"In this case, child-first, phased vaccination would need to start as soon as possible, and no later than mid September to be effective for mitigation," said Longini, a biostatistician in the Center for Statistical and Quantitative Infectious Diseases at the Hutchinson Center. He is also a professor of biostatistics at the University of Washington School of Public Health. Longini said that the current U.S. plan called for the vaccination to probably start in mid October, which could still be effective if the epidemic peaked in November or December as it did during the Hong Kong influenza A(H3N2) of 1968-69.

Children will experience the highest illness attack rates based upon epidemiological observations from the U.S. and around the world. In addition, from an outbreak of pandemic H1N1 at a private school in New York last April, the authors estimate that the typical student will infect an average of 2.4 other children in his or her school.

Many findings in this study are based on epidemiological studies and vaccine trails in the past for seasonal influenza vaccines.

"We would hope to be able to estimate the effectiveness of pandemic vaccines and other mitigation measures so that we can understand the control of pandemic H1N1 influenza," said M. Elizabeth Halloran, D.Sc., M.D., a co-author of the study and member of VIDI and professor of biostatistics at the University of Washington School of Public Health.

The predicted rate of pandemic H1N1 transmissibility – how many people an infected person will infect during influenza's infectious period in the beginning of an outbreak – is estimated to be 1.3 to 1.7. A value of 1.6 means that the epidemic could generate a total of 2.2 billion cases worldwide over a year. That translates to an overall illness attack rate of 32 percent of entire populations of a city or country. A person infected by someone else can expect to fall ill about two days after infection.

Longini and colleagues are considered among the world's leading disease modeling experts. They are part of the federal government's Models of Infectious Disease Agent Study (MIDAS) Network, an effort funded by the National Institute of General Medical Sciences at the National Institutes of Health.

Funding for the study came from the National Institute of General Medical Sciences and the National Institute of Allergy and Infectious Diseases.

Note to editors/reporters: To obtain a copy of the paper, "The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus," please contact the Science press office at 202-326-6440 or scipak@aaas.org

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>