Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccination of 70 percent of US population could control swine flu pandemic

14.09.2009
An aggressive vaccination program that first targets children and ultimately reaches 70 percent of the U.S. population would mitigate pandemic influenza H1N1 that is expected this fall, according to computer modeling and analysis of observational studies conducted by researchers at the Vaccine and Infectious Disease Institute (VIDI) at Fred Hutchinson Cancer Research Center.

Published in the Sept. 11 issue of Science Express, the early online edition of the journal Science, the study – which includes the first estimate of the transmissibility of pandemic H1N1 influenza in schools – recommends that 70 percent of children ages 6 months to 18 years be vaccinated first, as well as members of high-risk groups as identified by the U.S. Centers for Disease Control and Prevention.

These groups include health care and emergency services personnel and those at risk for medical complications from pandemic H1N1 illness such as persons with chronic health disorders and compromised immune systems. Two doses of vaccine, delivered three weeks apart, may be needed to confer adequate protection to the virus.

Corresponding author Ira Longini, Ph.D., and colleagues emphasized that a combination of factors – the availability of an effective vaccine to protect people against pandemic H1N1, coupled with the timing of the outbreak – will determine how quickly the epidemic can be slowed. The researchers estimate that to bring the epidemic under control aggressive vaccination of the population must begin at least a month before the epidemic peak, concentrating on children as much as possible.

"Our estimates of pandemic H1N1 in households, schools and in the community places this virus in the higher range of transmissibility," said Yang Yang, Ph.D., first author of the paper and a staff scientist at VIDI.

Although social distancing and the use of antiviral medicines can be partially effective at slowing pandemic flu spread, vaccination remains the most effective means of pandemic influenza control, the authors conclude. From a cost effectiveness measure, vaccination remains the most effective, while closing schools and other social gathering places is the least cost effective.

Vaccination increases population-level immunity and lowers the effective reproductive number of the virus, which results in two main effects: slowing the spread of infection and reducing the height of the epidemic peak; and reducing the overall illness attack rate, hospitalizations and mortality.

Other key findings in the study:

The current pattern of pandemic spread is most likely to be similar to the Asian influenza A (H2N2) pandemic of 1957-58. Substantial spread was expected to begin in early September with the epidemic peaking in mid to late October.

"In this case, child-first, phased vaccination would need to start as soon as possible, and no later than mid September to be effective for mitigation," said Longini, a biostatistician in the Center for Statistical and Quantitative Infectious Diseases at the Hutchinson Center. He is also a professor of biostatistics at the University of Washington School of Public Health. Longini said that the current U.S. plan called for the vaccination to probably start in mid October, which could still be effective if the epidemic peaked in November or December as it did during the Hong Kong influenza A(H3N2) of 1968-69.

Children will experience the highest illness attack rates based upon epidemiological observations from the U.S. and around the world. In addition, from an outbreak of pandemic H1N1 at a private school in New York last April, the authors estimate that the typical student will infect an average of 2.4 other children in his or her school.

Many findings in this study are based on epidemiological studies and vaccine trails in the past for seasonal influenza vaccines.

"We would hope to be able to estimate the effectiveness of pandemic vaccines and other mitigation measures so that we can understand the control of pandemic H1N1 influenza," said M. Elizabeth Halloran, D.Sc., M.D., a co-author of the study and member of VIDI and professor of biostatistics at the University of Washington School of Public Health.

The predicted rate of pandemic H1N1 transmissibility – how many people an infected person will infect during influenza's infectious period in the beginning of an outbreak – is estimated to be 1.3 to 1.7. A value of 1.6 means that the epidemic could generate a total of 2.2 billion cases worldwide over a year. That translates to an overall illness attack rate of 32 percent of entire populations of a city or country. A person infected by someone else can expect to fall ill about two days after infection.

Longini and colleagues are considered among the world's leading disease modeling experts. They are part of the federal government's Models of Infectious Disease Agent Study (MIDAS) Network, an effort funded by the National Institute of General Medical Sciences at the National Institutes of Health.

Funding for the study came from the National Institute of General Medical Sciences and the National Institute of Allergy and Infectious Diseases.

Note to editors/reporters: To obtain a copy of the paper, "The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus," please contact the Science press office at 202-326-6440 or scipak@aaas.org

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>