Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UV LED therapy shows promising results in preventing focal seizures

Study technique used on rat has potential to treat uncontrolled human epilepsy

Researchers from the University of Minnesota Medical School discovered that light from an ultraviolet diode (UV LED) reduced "seizure-like" activity in a rat epilepsy model. During the study, UV light released gamma aminobutyric acid (GABA) from the "caged" compound carbonyl amino butanoic acid (BC204).

GABA then decreased the abnormal electrical activity in the CA1 area of the brain. Results of this study have considerable potential in treating focal epilepsy in humans. Details of this study are available in the January 2010 issue of Epilepsia, a journal published by Wiley-Blackwell on behalf of the International League Against Epilepsy.

Focal (or partial) epilepsy is very common in both adults and can occur in children. It is caused by an abnormality in a localized area of the brain resulting from such conditions as stroke, trauma, or infections. Up to one-third of epileptic patients fail to respond to conventional medical therapies and are subject to toxic effects from antiepileptic drugs (AEDs). While surgery has benefited some patients with focal epilepsy, a substantial number of patients do not experience a complete remission after operation, prompting researchers to investigate alternative treatments.

... more about:
»BC204 »Epilepsia »Epilepsy »LED »optical data

Steven Rothman, M.D., and colleagues conducted experiments with UV LEDs to control seizure-like activity in rodent brain slices. Population spikes in CA1 (which reflect the discharge of a population of neurons) were elicited by delivering constant current pulses through a microelectrode placed in the CA3 brain area. Researchers induced seizure-like activity by adding the convulsant, 4-aminopyridine (4-AP; 100 µM) and removing magnesium from the fluid solution outside the cells. Caged GABA, BC204, was perfused into the preparation for at least 30 minutes prior to the first illumination.

When population spikes were measured (as a reflection of tissue excitability), the research team found that illumination of control slices with up to 200 mA LED current had no effect on peak amplitudes. Addition of BC204 (30 µM) and illumination using as little as 50 mA LED current produced a statistically significant reduction of the peak of the population spike. More important, BC204 (10 µM) significantly reduced the slice spikes and bursting induced by the 4-AP and low magnesium.

"Our strongly positive results, in an epilepsy model far more severe than the naturally occurring disease, suggest that this technique could translate to human epilepsy," said Dr. Rothman. Researchers believe that a programmable pump could deliver the caged GABA into the subarachnoid space over the epileptic area of the brain. UV LEDs could then be responsively activated to release GABA, using techniques similar to those used for cortical stimulation units that are currently in clinical trials.

The researchers are optimistic that an LED-based implantable device is feasible. "Optical stimulation would be a far more rapid delivery method than any mechanical device for direct administration of drug into the brain and would not subject patients to toxic doses of medication or irreversible brain damage from epilepsy resections," concluded Dr. Rothman.

Article: "Optical suppression of experimental seizures in rat brain slices." Xiao-Feng Yang, Brigitte F. Schmidt, Daniel L. Rode, and Steven M. Rothman. Epilepsia; Published Online: August 2009 (DOI: 10.1111/j.1528-1167.2009.02252.x); Print Issue Date: January 2010

This study is published in Epilepsia. Media wishing to receive a PDF of this article may contact

Epilepsia is the leading, most authoritative source for current clinical and research results on all aspects of epilepsy. As the journal of the International League Against Epilepsy, subscribers every month will review scientific evidence and clinical methodology in: clinical neurology, neurophysiology, molecular biology, neuroimaging, neurochemistry, neurosurgery, pharmacology, neuroepidemiology, and therapeutic trials. For more information, please visit

Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes nearly 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit or

Dawn Peters | EurekAlert!
Further information:

Further reports about: BC204 Epilepsia Epilepsy LED optical data

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>