Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UV LED therapy shows promising results in preventing focal seizures

06.01.2010
Study technique used on rat has potential to treat uncontrolled human epilepsy

Researchers from the University of Minnesota Medical School discovered that light from an ultraviolet diode (UV LED) reduced "seizure-like" activity in a rat epilepsy model. During the study, UV light released gamma aminobutyric acid (GABA) from the "caged" compound carbonyl amino butanoic acid (BC204).

GABA then decreased the abnormal electrical activity in the CA1 area of the brain. Results of this study have considerable potential in treating focal epilepsy in humans. Details of this study are available in the January 2010 issue of Epilepsia, a journal published by Wiley-Blackwell on behalf of the International League Against Epilepsy.

Focal (or partial) epilepsy is very common in both adults and can occur in children. It is caused by an abnormality in a localized area of the brain resulting from such conditions as stroke, trauma, or infections. Up to one-third of epileptic patients fail to respond to conventional medical therapies and are subject to toxic effects from antiepileptic drugs (AEDs). While surgery has benefited some patients with focal epilepsy, a substantial number of patients do not experience a complete remission after operation, prompting researchers to investigate alternative treatments.

... more about:
»BC204 »Epilepsia »Epilepsy »LED »optical data

Steven Rothman, M.D., and colleagues conducted experiments with UV LEDs to control seizure-like activity in rodent brain slices. Population spikes in CA1 (which reflect the discharge of a population of neurons) were elicited by delivering constant current pulses through a microelectrode placed in the CA3 brain area. Researchers induced seizure-like activity by adding the convulsant, 4-aminopyridine (4-AP; 100 µM) and removing magnesium from the fluid solution outside the cells. Caged GABA, BC204, was perfused into the preparation for at least 30 minutes prior to the first illumination.

When population spikes were measured (as a reflection of tissue excitability), the research team found that illumination of control slices with up to 200 mA LED current had no effect on peak amplitudes. Addition of BC204 (30 µM) and illumination using as little as 50 mA LED current produced a statistically significant reduction of the peak of the population spike. More important, BC204 (10 µM) significantly reduced the slice spikes and bursting induced by the 4-AP and low magnesium.

"Our strongly positive results, in an epilepsy model far more severe than the naturally occurring disease, suggest that this technique could translate to human epilepsy," said Dr. Rothman. Researchers believe that a programmable pump could deliver the caged GABA into the subarachnoid space over the epileptic area of the brain. UV LEDs could then be responsively activated to release GABA, using techniques similar to those used for cortical stimulation units that are currently in clinical trials.

The researchers are optimistic that an LED-based implantable device is feasible. "Optical stimulation would be a far more rapid delivery method than any mechanical device for direct administration of drug into the brain and would not subject patients to toxic doses of medication or irreversible brain damage from epilepsy resections," concluded Dr. Rothman.

Article: "Optical suppression of experimental seizures in rat brain slices." Xiao-Feng Yang, Brigitte F. Schmidt, Daniel L. Rode, and Steven M. Rothman. Epilepsia; Published Online: August 2009 (DOI: 10.1111/j.1528-1167.2009.02252.x); Print Issue Date: January 2010 http://www3.interscience.wiley.com/journal/122541827/abstract

This study is published in Epilepsia. Media wishing to receive a PDF of this article may contact medicalnews@wiley.com

Epilepsia is the leading, most authoritative source for current clinical and research results on all aspects of epilepsy. As the journal of the International League Against Epilepsy, subscribers every month will review scientific evidence and clinical methodology in: clinical neurology, neurophysiology, molecular biology, neuroimaging, neurochemistry, neurosurgery, pharmacology, neuroepidemiology, and therapeutic trials. For more information, please visit http://www3.interscience.wiley.com/journal/117957420/home.

Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes nearly 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyblackwell.com or www.interscience.wiley.com.

Dawn Peters | EurekAlert!
Further information:
http://www.wiley.com
http://www.interscience.wiley.com

Further reports about: BC204 Epilepsia Epilepsy LED optical data

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>