Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTSW study unlocks origin of brown fat cells important in weight maintenance

26.09.2013
In ongoing research aimed at battling obesity, UT Southwestern Medical Center researchers have deciphered how new fat cells are formed in energy-storing fat pads.

In particular, researchers sought to find out the origin of "brown" fat cells and whether humans can make more of them in order to burn extra calories – a finding that could have significant impact in battling obesity and related diseases.

"Much of the current excitement in the obesity field stems from recent observations highlighting that, even as adults, we have the ability to generate brown fat cells in response to cold exposure. Unlike white fat cells that mostly just store fat, brown adipocytes keep us warm by burning fat at a high rate," said Dr. Philipp Scherer, Director of the Touchstone Center for Diabetes Research at UT Southwestern and senior author of the study available online at Nature Medicine.

While generation of brown fat cells previously was thought to be mostly relevant for rodents and human infants, Dr. Scherer said, current evidence points to the observation that adults also generate these cells when exposed to cold.

Brown fat cells in adults tend to be randomly interspersed in subcutaneous white fat, with a trend toward increased accumulation in the upper chest and neck areas. In general, brown fat tissue makes up just a small percentage of total body fat mass.

The Touchstone Center's staff devotes its efforts to the study of cells and tissues that either contribute to, or are affected by, diabetes and its related diseases, including the physiology of fat tissue. In this study, the UT Southwestern research team examined the timing and nature of changes in fat cell composition in response to weight gain, cold exposure, and development. Genetic tools developed at the medical center over the past eight years were used to label all pre-existing fat cells. Researchers then were able to track where new fat cells emerged.

When mice were exposed to high-fat diets, significant differences between the types of white fat deposits were observed – subcutaneous fat deposits took their existing fat cells and made them bigger, while other deposits were more prone to generating new fat cells. Brown fat cells did not form during this experiment, nor during a test that monitored early growth-related development. Only when exposed to cold did new brown fat cells appear.

"The major finding is that the cold-induced adaptation and appearance of brown fat cells involves the generation of completely new cells rather than a retooling of pre-existing white fat cells into brown fat cells in response to the cold," Dr. Scherer said.

The researchers next hope to translate these findings into clinical use, with future efforts directed toward therapeutic strategies to activate precursor cells to become new brown fat cells rather than to convert white fat cells into brown fat cells.

The investigation received support from the National Institutes of Health and the American Diabetes Association.

Other UT Southwestern researchers involved in the study were lead author Dr. Quiong Wang, a postdoctoral researcher in internal medicine; Caroline Tao, a graduate student and student research assistant in internal medicine; and Dr. Rana Gupta, assistant professor of internal medicine.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 90,000 hospitalized patients and oversee more than 1.9 million outpatient visits a year.

This news release is available on our home page at utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at utsouthwestern.edu/receivenews

Debbie Bolles | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Brown fat cells Medical Wellness Touchstone brown fat fat cells fat tissue

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>