Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uterine health more important than egg quality

03.02.2011
For women seeking pregnancy by assisted reproductive technologies, such as in-vitro fertilization (IVF), a new study shows that the health of the uterus is more relevant than egg quality for a newborn to achieve normal birth weight and full gestation. This study, published in Fertility and Sterility, an international journal for obstetricians, offers new information for women with infertility diagnoses considering options for conceiving.

The study was conducted by Dr. William Gibbons, director of The Family Fertility Program at Texas Children's Hospital and professor of obstetrics and gynecology at Baylor College of Medicine, along with colleagues at the Society for Assisted Reproductive Technologies (SART) Marcelle Cedars, MD and Roberta Ness, MD.

They reviewed three years of data that compared average birth weight and gestational time for single births born as a result of standard IVF, IVF with donor eggs and IVF with a surrogate. While the ability to achieve a pregnancy is tied to egg/embryo quality, the obstetrical outcomes of birth weight and length of pregnancy are more significantly tied to the uterine environment that is affected by the reason the woman is infertile.

There were more than 300,000 IVF cycles during the time of the study producing more than 70,000 singleton pregnancies.

"This is the first time that a study demonstrated that the health of a women's uterus is a key determinant for a fetus to obtain normal birth weight and normal length of gestation," said Dr. Gibbons. "While obvious issues of uterine fibroids or conditions that alter the shape of the uterus are suspected to affect pregnancy rates, conditions that result in poorer ovarian function to the point of needing donor eggs are not known. Further research is needed to fully understand this complex issue."

As assisted reproductive technologies (ART) in the U.S. mature, increasing attention is directed not just to pregnancy rates but also to the obstetrical outcomes of those resulting pregnancies – meaning the newborn's birth weight, health and gestational age. Currently, about one percent of U.S. births are the result of ART therapies such as IVF, donor eggs, intracytoplasmic sperm injection, embryo cryopreservation, embryo donation, preimplanation genetic diagnosis, and male infertility surgery and medical therapy.

The study explored several scenarios and found that the birth weight associated with standard IVF – in which the patient carried the embryo created with her own egg – was greater than that associated with donor egg cycles, and less than that in gestational carrier cycles. This finding held true even when other factors were considered showing that the woman's own uterus may be a determining factor.

Gibbons said the study also determined that a diagnosis of male infertility did not affect birth weight or gestational age, yet every female infertility diagnosis was associated with lower birth weight and a reduced gestational age.

Patients diagnosed with a uterine health issue, such as fibroids or other factors, had babies with the lowest birth weights and gestational ages. This led the researchers to examine the uterine environment as it relates to the type of therapy being considered.

Gibbons explains that in standard IVF, an embryo is transferred to a woman who has just undergone controlled ovarian hyperstimulation, while in donor egg IVF and gestational carrier IVF, the embryo is transferred to a "natural" or unstimulated uterus. Then, the researchers looked at IVF utilizing frozen embryo transfer in which an embryo created with a patient's own egg is transferred to her own unstimulated uterus. They found that babies born of frozen embryo transfer cycles had markedly greater birth weights than those born as a result of standard IVF.

"That finding may help women seeking pregnancy and their physicians to consider frozen embryo transfer as a possible option if the uterine health is not a consideration," said Gibbons. "This study shows us how so many factors are related to a successful outcome and we continue to learn where further research may be needed."

The complete study, called "Toward understanding obstetrical outcome in advanced assisted reproduction: varying sperm, oocyte and uterine source and diagnosis," can be found at Fertility and Sterility at www.fertstert.org.

About Texas Children's Hospital

Texas Children's Hospital is committed to a community of healthy children by providing the finest pediatric patient care, education and research. Renowned worldwide for its expertise and breakthrough developments in clinical care and research, Texas Children's is nationally ranked in all ten subspecialties in U.S. News & World Report's list of America's Best Children's Hospitals. Texas Children's also operates the nation's largest primary pediatric care network, with more than 40 offices throughout the greater Houston community. Texas Children's has embarked on a $1.5 billion expansion, Vision 2010, which includes the Jan and Dan Duncan Neurological Research Institute, a comprehensive obstetrics facility focusing on high-risk births and a community hospital in suburban West Houston. For more information on Texas Children's Hospital, go to www.texaschildrens.org. Get the latest news from Texas Children's Hospital by visiting the online newsroom and on Twitter at twitter.com/texaschildrens.

Christy Brunton | EurekAlert!
Further information:
http://www.texaschildrens.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>