Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers find clues to TB drug resistance

30.03.2010
Two new tuberculosis studies by UT Southwestern Medical Center researchers provide good news and bad news about the bacterium that infects nearly a third of the world's population and a disease that kills nearly 2 million people each year.

The good news: A type of blood pressure medication shows promise at overcoming some drug-resistant tuberculosis, at least in the laboratory. The bad news: The Mycobacterium tuberculosis bacterium, which causes the disease, might be resistant to treatment in more people than previously thought.

Dr. Tawanda Gumbo, associate professor of internal medicine at UT Southwestern and senior author of the studies, said the research challenges current thinking about how the TB bacterium works in the body as well as how best to kill it.

His published findings come after the Dallas County Department of Health and Human Services announced this month that while the number of TB cases diagnosed in Dallas County dropped to 195 in 2009 from 219 a year earlier, the county's rate of infection is still 1.5 times higher than the national rate.

In the first study, available online and in the April 15 edition of The Journal of Infectious Diseases, Dr. Gumbo and his colleagues used an experimental apparatus to simulate the way TB bacteria grow in the human lung. When they exposed the bacteria to drugs commonly used to treat the disease – ethambutol and isoniazid – the bacterial cells activated a cellular mechanism that pumps each drug out of the cells. The pumping action enables the rapid emergence of high-level resistance to the drugs whether administered together as well as individually, Dr. Gumbo said.

"We treat TB with multiple drugs essentially to protect each other from resistance, but yet we've been puzzled with why you find resistance to both drugs together," Dr. Gumbo said. "Our findings make sense – it is more efficient from the bacteria's viewpoint to employ the same mechanism get rid of multiple attackers, whether they strike alone or at the same time."

Resistance was drastically reduced, however, when the researchers gave the blood-pressure drug reserpine – which is known to block this pumping action – to the TB cells before administering ethambutol and isoniazid.

"There is already a known solution to this problem," Dr. Gumbo said. "Hopefully now we can reduce resistance to TB treatment drugs."

Current TB treatment uses multiple drugs simultaneously, in hopes of preventing drug resistance. The next step in his research, Dr. Gumbo said, is to test all the first-line drug treatments together with the pump blocker in humans.

If first-line drugs won't work to kill TB, the person is said to have multidrug-resistant TB and doctors proceed to second-line treatments, which are usually more expensive and more toxic and take longer to work, Dr. Gumbo said.

In Dr. Gumbo's second study, available online and in the April edition of Antimicrobial Agents and Chemotherapy, the researchers found that more people might harbor drug-resistant TB than currently believed because tests that detect the TB bacteria's resistance don't account for variations in height, weight and other factors among TB patients.

Guidelines for testing whether a person is infected with a drug-resistant TB strain were developed more than 40 years ago. They involve determining the lowest concentration of a drug that will kill at least 95 percent of the TB bacteria in a patient. The TB is said to be resistant to the drug if more than 1 percent of TB still grows at that concentration.

Dr. Gumbo said those guidelines are useful for showing trends, but are not effective for predicting how an individual will respond to therapy. Recommended drug concentrations and dosages, for example, don't account for factors such as body weight, height, race and how much food a person ate before being tested.

"Science has evolved," Dr. Gumbo said. "We have better tools now so we can do more and predict better treatment."

In the second study, he again simulated TB in the human lung and virtually simulated eight clinical trials involving 10,000 patients. The computer simulation factored in pharmacokinetics (how a body handles a drug based on heterogeneous factors) to determine how likely a dose of a given drug is to kill TB.

Dr. Gumbo's research team found that the concentrations typically used in practice are too low, leading people to think they have treatable TB, when in fact their disease might be resistant to common drugs.

"There is likely more multidrug-resistant TB than previously thought – possibly up to four times as much," Dr. Gumbo said. "That means some people may be getting underdosed with medicine weaker than the disease, and they die."

The next step, Dr. Gumbo said, is to confirm these computer-driven results in patients.

Dr. Gumbo's research is funded by a 2007 National Institutes of Health Director's New Innovator Award, which supports bold ideas from some of the nation's most innovative early-career scientists.

Other UT Southwestern researchers participating in the research were Sandirai Musuka, research associate in internal medicine, and Dr. Shashikant Srivastava, postdoctoral researcher in internal medicine. Researchers from Texas Tech University Health Sciences Center's School of Pharmacy also were involved in the study published in The Journal of Infectious Diseases.

Visit http://www.utsouthwestern.org/infectiousdiseases to learn more about UT Southwestern's clinical services for infectious diseases, including tuberculosis.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>