Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern investigators provide first atomic-level images of the CLOCK complex

05.06.2012
Drives circadian rhythm in mammals' cells

UT Southwestern Medical Center researchers have taken a major step toward understanding the cellular clock, mapping for the first time the atomic-level architecture of a key component of the timekeeper that governs the body's daily rhythms.

The daily, or circadian, cycles guided by the body's clocks affect our ability to get a good night's sleep, how fast we recover from jet lag, and even the best time to give cancer treatments, said Dr. Joseph Takahashi, senior author of the Science study published online and a pioneer in the study of circadian rhythms.

Understanding the structure of the cellular clock could lead to better treatments for insomnia, diabetes, and even cancer.

"The clock is found in virtually every cell of the body, and is important for controlling many different metabolic functions," said Dr. Takahashi, chairman of neuroscience and a Howard Hughes Medical Institute (HHMI) investigator at UT Southwestern.

Mapping the 3-D structure of the key component in the cellular clock – called the CLOCK:BMAL1 transcriptional activator complex – will have a great impact on the study of circadian rhythms and in other areas like toxicology and the growth of nerve cells, in which proteins in the same family play central roles, he said.

"Ultimately, we have to go to the atomic level to really understand how these proteins work" Dr. Takahashi said.

The Takahashi laboratory has spent years determining the 3-D structure of the CLOCK:BMAL1 complex using X-ray crystallography. The breakthrough came in the spring of 2011 when Yogarany Chelliah, an HHMI research specialist at UT Southwestern, was able to crystallize the proteins. The structure was determined in collaboration with Dr. Hong Zhang, associate professor of biochemistry.

The researchers found that the CLOCK protein is tightly wrapped around the BMAL1 protein in an unusually asymmetrical fashion. They identified three distinct areas for interactions between CLOCK and BMAL1 as well as regions for interactions with other molecules that might affect the cellular clock by changing the sleep-wake cycle or other body processes that depend on circadian rhythm, he said.

Dr. Takahashi's research on the subject goes back almost 20 years. That's when he began a behavioral study of mice looking for those animals in which their biological clocks seemed out of sync. After screening hundreds of mice, his laboratory in 1994 identified one mutant mouse whose daily cycle was four hours longer than normal. He named that mouse the Clock mutant.

Dr. Takahashi then used that mouse to identify the world's first circadian rhythm gene in a mammal. Researchers in his laboratory cloned the Clock gene in 1997. In 1998, they discovered that the CLOCK protein worked in concert with the BMAL1 protein in a study done in collaboration with Dr. Charles Weitz at Harvard Medical School.

Two years ago, Dr. Takahashi's team – in collaboration with Dr. Joseph T. Bass at Northwestern University Feinberg School of Medicine in Chicago – reported in Nature that disruptions in the Clock and Bmal1 genes in mice can alter the release of insulin by the pancreas, which results in diabetes.

"We started on this path a long time ago, and it actually began with a mouse, which then allowed us to find the Clock gene, and then from this gene we now see the proteins from their crystal structure," Dr. Takahashi said. "For that to all happen after such a long quest is particularly satisfying."

Other UT Southwestern researchers involved in the study include Nian Huang, postdoctoral researcher in biochemistry; Dr. Yongli Shan, postdoctoral researcher in neuroscience; Clinton A. Taylor, student research assistant; Dr. Seung-Hee Yoo, instructor of neuroscience; and Dr. Carla Green, professor of neuroscience. Dr. Carrie Partch – a former postdoctoral researcher in biochemistry, neuroscience, and the HHMI – is now an assistant professor of chemistry and biochemistry at UC Santa Cruz.

This work was supported by the HHMI, the American Heart Association, and the National Institutes of Health.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Deborah Wormser | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>