Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern investigators provide first atomic-level images of the CLOCK complex

05.06.2012
Drives circadian rhythm in mammals' cells

UT Southwestern Medical Center researchers have taken a major step toward understanding the cellular clock, mapping for the first time the atomic-level architecture of a key component of the timekeeper that governs the body's daily rhythms.

The daily, or circadian, cycles guided by the body's clocks affect our ability to get a good night's sleep, how fast we recover from jet lag, and even the best time to give cancer treatments, said Dr. Joseph Takahashi, senior author of the Science study published online and a pioneer in the study of circadian rhythms.

Understanding the structure of the cellular clock could lead to better treatments for insomnia, diabetes, and even cancer.

"The clock is found in virtually every cell of the body, and is important for controlling many different metabolic functions," said Dr. Takahashi, chairman of neuroscience and a Howard Hughes Medical Institute (HHMI) investigator at UT Southwestern.

Mapping the 3-D structure of the key component in the cellular clock – called the CLOCK:BMAL1 transcriptional activator complex – will have a great impact on the study of circadian rhythms and in other areas like toxicology and the growth of nerve cells, in which proteins in the same family play central roles, he said.

"Ultimately, we have to go to the atomic level to really understand how these proteins work" Dr. Takahashi said.

The Takahashi laboratory has spent years determining the 3-D structure of the CLOCK:BMAL1 complex using X-ray crystallography. The breakthrough came in the spring of 2011 when Yogarany Chelliah, an HHMI research specialist at UT Southwestern, was able to crystallize the proteins. The structure was determined in collaboration with Dr. Hong Zhang, associate professor of biochemistry.

The researchers found that the CLOCK protein is tightly wrapped around the BMAL1 protein in an unusually asymmetrical fashion. They identified three distinct areas for interactions between CLOCK and BMAL1 as well as regions for interactions with other molecules that might affect the cellular clock by changing the sleep-wake cycle or other body processes that depend on circadian rhythm, he said.

Dr. Takahashi's research on the subject goes back almost 20 years. That's when he began a behavioral study of mice looking for those animals in which their biological clocks seemed out of sync. After screening hundreds of mice, his laboratory in 1994 identified one mutant mouse whose daily cycle was four hours longer than normal. He named that mouse the Clock mutant.

Dr. Takahashi then used that mouse to identify the world's first circadian rhythm gene in a mammal. Researchers in his laboratory cloned the Clock gene in 1997. In 1998, they discovered that the CLOCK protein worked in concert with the BMAL1 protein in a study done in collaboration with Dr. Charles Weitz at Harvard Medical School.

Two years ago, Dr. Takahashi's team – in collaboration with Dr. Joseph T. Bass at Northwestern University Feinberg School of Medicine in Chicago – reported in Nature that disruptions in the Clock and Bmal1 genes in mice can alter the release of insulin by the pancreas, which results in diabetes.

"We started on this path a long time ago, and it actually began with a mouse, which then allowed us to find the Clock gene, and then from this gene we now see the proteins from their crystal structure," Dr. Takahashi said. "For that to all happen after such a long quest is particularly satisfying."

Other UT Southwestern researchers involved in the study include Nian Huang, postdoctoral researcher in biochemistry; Dr. Yongli Shan, postdoctoral researcher in neuroscience; Clinton A. Taylor, student research assistant; Dr. Seung-Hee Yoo, instructor of neuroscience; and Dr. Carla Green, professor of neuroscience. Dr. Carrie Partch – a former postdoctoral researcher in biochemistry, neuroscience, and the HHMI – is now an assistant professor of chemistry and biochemistry at UC Santa Cruz.

This work was supported by the HHMI, the American Heart Association, and the National Institutes of Health.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Deborah Wormser | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>