Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT researcher finds power and corruption may be good for society

15.12.2010
Moral corruption and power asymmetries are pervasive in human societies, but as it turns out, that may not be such a bad thing.

They are familiar scenes: politicians bemoaning the death of family values only for extramarital affairs to be unveiled or politicians preaching financial sacrifice while their expense accounts fatten up. Moral corruption and power asymmetries are pervasive in human societies, but as it turns out, that may not be such a bad thing.

Francisco Úbeda, an evolutionary biology professor at the University of Tennessee, Knoxville, and Edgar Duéñez of Harvard University found that power and corruption may play a role in maintaining overall societal cooperation.

A report of their research is published in the journal Evolution and can be viewed online at http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291558-5646/earlyview.

Using game theory, Úbeda and Duéñez looked at what causes individuals in society to cooperate even though those in charge display some level of corruption. They developed a model that allows individuals who are responsible for punishing noncooperators (e.g., law enforcers and government officials) to fail to cooperate themselves by acting in a corrupt manner. They also considered the possibility that these law enforcers, by virtue of their positions, are able to sidestep punishment when they are caught failing to cooperate.

What they found is that the bulk of society cooperates because there are law enforcers forcing them to stay in line. People tend to cooperate because they do not want to get punished.

Even if the law enforcers consider themselves above the law and behave in a corrupt way, overall societal cooperation is maintained – as long as there is a small amount of power and corruption. However, if the law enforcers have too much power and corruption runs rampant, overall societal cooperation breaks down.

Úbeda explained how it works:

"Law enforcers often enjoy privileges that allow them to avoid the full force of the law when they breach it. Law enforcing results in the general public abiding by the law. Thus law enforcers enjoy the benefits of a lawful society and are compensated for their law enforcing by being able to dodge the law," he said.

The researchers concluded that power and corruption benefit society; without law enforcers, individuals have less incentive to cooperate and without power and corruption, law enforcers have less incentive to do their job.

The researchers' findings have far-reaching implications. In biology, they may help explain corrupt behaviors in social insects. In economics, the findings may aid in formulating policies by providing insights on how to harness corruption to benefit society. In the field of psychology, the findings provide a justification to the correlation between power and corruption observed in humans.

Whitney Holmes | EurekAlert!
Further information:
http://www.utk.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>