Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ursano to Lead Largest Ever Study of Suicide in the Military

20.07.2009
Robert J. Ursano, M.D., director of the Center for the Study of Traumatic Stress and chairman of the Uniformed Services University of the Health Sciences (USU) Department of Psychiatry in Bethesda, Md., will lead an interdisciplinary team of four research institutions to carry out a National Institute of Mental Health study – the largest study of suicide and mental health among military personnel ever undertaken, with $50 million in funding from the U.S. Army.

The study is a direct response to the Army’s request to NIMH to enlist the most promising scientific approaches for addressing the rising suicide rate among soldiers. Suicide rates among Army personnel have risen substantially since the beginning of the current conflicts in Iraq and Afghanistan despite major surveillance and intervention efforts introduced by the Army to prevent suicides over this period.

Four institutions will collaboratively conduct an epidemiologic study of mental health, psychologic resilience, suicide risk, suicide-related behaviors, and suicide deaths in the U.S. Army. The consortium brings together research teams that are internationally known for their expertise and experience in research on military health, health and behavior surveys, epidemiology, and suicide, including genetic and neurobiological factors involved in suicidal behavior. Ursano will serve as project director. Consortium principal investigators are Steven Heeringa, Ph.D., at the University of Michigan, Ann Arbor; Ronald Kessler, Ph.D., Harvard Medical School, Cambridge, Mass.; and John Mann, M.D., at Columbia University, New York City.

Dr. Ursano is a world-renowned expert in mental health and trauma and will work closely with the principal investigators as well as NIMH scientists and Army project officers. The Center for the Study of Traumatic Stress, a partnering center of the Defense Centers of Excellence for PTSD and TBI, conducts research and offers education, consultation and training on preparing for, and responding to, the psychological effects and health consequences of traumatic events.

The study will use several strategies to generate information on risk and protective factors:

- The Army already has a rich archive of data on its personnel. Study investigators will work to consolidate information from different databases and use this resource to identify possible suicide risk and protective factors.

- Investigators will undertake a retrospective case-control study in which individual soldiers who have attempted suicide with or without fatal outcomes (cases) will be matched with individuals with similar demographic characteristics (controls). Comparison of information gathered on cases and controls should provide clues to risk and protective factors.

- A survey for which 90,000 active Army personnel representative of the entire Army will be contacted will provide information on the prevalence of suicide-related behavior and risk and protective factors. When possible, saliva and blood samples will be collected for genetic and neurobiologic studies.

- All 80,000 to 120,000 recruits who enter the Army in each of the first three years of the study will be asked to participate in a survey similar to the all-Army survey above.

This research will encompass active duty Army personnel across all phases of service, including members of the National Guard and Reserves. Soldiers’ confidentiality will be protected as investigators explore the nature of risk and protective factors and the timing of events that could influence risk, such as time since enlistment and deployment status and history.

Although planned to continue for 5 years, the study is designed to be able to identify quickly potential risk factors that can inform the continuing research project and the Army’s ongoing efforts to prevent suicide among its personnel. Identification of risk and protective factors—including existing prevention strategies that show effectiveness in reducing suicide risk—is a means to the end of developing evidence-based interventions that are readily applicable in a military context and can be put into action quickly to reverse the increase in suicide rates.

Located on the grounds of Bethesda’s National Naval Medical Center and across from the National Institutes of Health, USU is the nation’s federal school of medicine and graduate school of nursing. The university educates health care professionals dedicated to career service in the Department of Defense and the U.S. Public Health Service. Students are active-duty uniformed officers in the Army, Navy, Air Force and Public Health Service who are being educated to deal with wartime casualties, natural disasters, emerging infectious diseases, and other public health emergencies. Of the university’s nearly 4,400 physician alumni and more than 400 advanced practice nurses, the vast majority serve on active duty and are supporting operations in Iraq, Afghanistan, and elsewhere, offering their leadership and expertise. The University also has graduated more than 600 public health professionals.

For more information about USU and its programs, visit www.usuhs.mil.

Ken Frager | Newswise Science News
Further information:
http://www.usuhs.mil

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>