Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urology-owned radiation oncology self-referral can increase patients' travel distance for treatment

15.08.2012
Men with prostate cancer in Texas may be driving more than three times farther than needed to obtain radiation oncology treatments for their cancer when treated at a urology-owned radiation oncology practice versus other facilities, according to a study to be published online August 15, 2012, and in the September 1, 2012, print issue of the International Journal of Radiation Oncology*Biology*Physics (Red Journal), the official scientific journal of the American Society for Radiation Oncology (ASTRO).

This study reviewed 229 urology practices in Texas and found that 5 percent (12 centers) offered radiation oncology services, and 53 percent of the state's population lives within 10 miles of these centers.

The 12 urology-owned practices were found to have multiple urologic clinics, but each practice has only one radiation oncology treatment center focused on prostate cancer treatment. This often resulted in extended travel times because radiation therapy is not available at the same physical location as the urologic clinic where the patient was initially diagnosed. The mean patient travel distance was found to be 19.7 miles (26.11 minutes) to the urology-owned center versus 5.88 miles (9.15 minutes) to the nearest radiation oncology center.

The patient benefits of this practice model, known as physician self-referral, have been questioned particularly with regard to its impact on increasing health care costs. Self-referral is being investigated by the U.S. Government Accountability Office and others due to concern that financial incentives could steer patients to more costly, unnecessary and/or less effective procedures. This article reinforces concern about the increase in urology-owned radiation oncology practices across the country, and further notes that 28 percent of Texas urologists now work in practices that self-refer for radiation oncology services. According to a national Urology Times survey, published on December 1, 2011, 19 percent of urology groups report owning linear accelerators to provide radiation oncology treatments, and these medical groups refer patients for treatment within their own radiation oncology center.

"Integrated urology-radiation oncology practices are increasingly common in Texas and have the potential to impact patient care. For example, our study illustrates that patients diagnosed by a urologist whose practice owns a radiation treatment facility will, on average, drive three times farther to reach the radiation treatment facility owned by their urologist than they would have to drive to reach the nearest independent radiation treatment facility," said Benjamin D. Smith, MD, a radiation oncologist at the University of Texas MD Anderson Cancer Center in Houston and one of the study's authors.

Study authors affirm that their findings are limited to their research area of the state of Texas and recommend additional analysis of how urology-owned self-referral practices affect patient care, quality of treatment and patient satisfaction and outcomes, not just patient travel time.

"Travel time to cancer care centers is crucial, especially for older men with advanced disease, because external radiation therapy often requires daily treatment for six to eight weeks. These patients often need to lean on friends and relatives to help them get to and from these multiple appointments. We must be judicious when proposing treatment options to our patients and appreciate the time and travel investment, including significant transportation and fuel costs, they make when choosing radiation therapy," said Colleen Lawton, MD, FASTRO, and president-elect of ASTRO. Dr. Lawton is a prostate cancer specialist and professor and vice-chairman of the department of radiation oncology at the Froedtert and Medical College Clinical Cancer Center in Milwaukee.

The study's authors are Benjamin D. Smith, MD, department of radiation oncology at the University of Texas MD Anderson Cancer Center; Pavan M .Jhaveri, MD, section of radiation oncology in the department of radiology at Baylor College of Medicine, Houston; Zhuyi Sun, BS, of the department of radiation oncology at the University of Texas MD Anderson Cancer Center; Leslie Ballas, MD, of Valley Radiotherapy Associates Medical Group, Manhattan Beach, Calif.; David S. Followill, PhD, department of radiation physics at the University of Texas MD Anderson Cancer Center; Karen E. Hoffman, MD, MHSc, MPH, department of radiation oncology at the University of Texas MD Anderson Cancer Center; and Jing Jiang, MS, department of biostatistics at the University of Texas MD Anderson Cancer Center.

For the complete text of the study, contact Michelle Kirkwood, 703-286-1600, press@astro.org. To learn more about the Red Journal, visit www.redjournal.org.

ASTRO is the largest radiation oncology society in the world, with more than 10,000 members who specialize in treating patients with radiation therapies. As the leading organization in radiation oncology, biology and physics, the Society is dedicated to improving patient care through education, clinical practice, advancement of science and advocacy. For more information on radiation therapy, visit www.rtanswers.org. To learn more about ASTRO, visit www.astro.org.

Michelle Kirkwood | EurekAlert!
Further information:
http://www.astro.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>