Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urbanization to convert 300,000 km2 of prime croplands

27.12.2016

Due to rapid urban area expansion, some 300,000 square kilometers of particularly fertile cropland will be lost by the year 2030. That area of land—almost the size of Germany—is estimated to have accounted for nearly four per cent of the worldwide cultivation of food crops in the year 2000. These are results of a study led by the Mercator Research Institute on Global Commons and Climate Change (MCC). A comparison underlines the relevance: the food produced on that area would be enough to provide more than 300 million people with 2,500 calories-per-day—for an entire year.

The MCC study, entitled “Future urban land expansion and implications for global croplands” and authored by Christopher Bren d’Amour and Felix Creutzig together with other scientists, just appeared in the Proceedings of the "National Academy of Sciences of the United States of America" (PNAS). According to the study, global urbanization will take place on agricultural land that is almost twice as fertile as the world average.


India 2030

MCC


China 2030

MCC

The loss of cropland in Asia and Africa will be particularly severe: Africa has the highest urbanization rates, while whereas Asia has the highest absolute growth of the urban population. China alone will have to bear one-fourth of total global cropland loss, amounting to nearly 80,000 km2.

“Hotspots of cropland loss tend to be river valleys and deltas, such as the Yangtze River Delta near Shanghai or the Pearl River Delta near Hong Kong. On a regional level, that food production loss cannot always be compensated for. This, in turn, could have an impact on the world food system,” says lead author Bren d’Amour. The study also shows that the land-use conflict between urbanization and food production can differ markedly from one global region to the next. “A lot depends on the urbanization dynamics of the individual countries. In India, for example, the urbanization process is not as fast as in China and smaller in overall scale. This is reflected in our results, which predict significantly lower cropland losses for India.”

... more about:
»croplands »food production

For their research, the scientists used spatially explicit urban area expansion projections from Yale University. They then combined these with land-use data from the University of Minnesota and the University of British Columbia on global croplands and crop yields. The MCC study examined the total loss of croplands worldwide. To determine the productivity of that land, the researchers used the aggregated production of the 16 most important food crops, including for example maize, rice, soybeans, and wheat.

Aside from Asia, the rapidly urbanizing regions of Africa will be another global hotspot of loss of cropland. Among these are Nigeria as well as Burundi and Rwanda, already severely affected by hunger and food shortage. For the African population, this challenge is compounded by two factors: the distinct vulnerability of many African countries to the effects of climate change, and the comparatively greater difficulties encountered by the unemployed rural population to gain a foothold in the urban labor markets.

The urbanization in Egypt, too, is particularly pronounced: By 2030, the country could lose about one-third of its cropland due to urbanization. To exacerbate matters, the Nile Delta region around Cairo is likely to be strongly affected by sea level rise. And although comparatively small, this area churns out the majority of the country’s agricultural production.

“Policy-makers at the municipal level are now called on to take action. Their time has come, since urban planning is now part and parcel of world policy,” says Felix Creutzig, head of the MCC Working Group on Land Use, Infrastructure and Transport. “Urban planners can contribute to preventing small farmers from losing their livelihoods. Spatially efficient urbanization could help to retain the existing agricultural system while continuing to provide small farmers with access to the urban food market.”

Reference of the cited article:

Bren d’Amour, Christopher et al. (2016): Future urban expansion and implications for global croplands. Proceedings of the National Academy of Sciences of the United States of America,
DOI: 10.1073/pnas.1615688114

For content related queries please contact Felix Creutzig (telephone: +49 174 905 41 05, email: creutzig@mcc-berlin.net).

Weitere Informationen:

https://www.eurekalert.org/jrnls/pnas/16-06036.htm
http://www.mcc-berlin.de

Fabian Löhe | idw - Informationsdienst Wissenschaft

Further reports about: croplands food production

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>