Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban 'green' spaces may contribute to global warming

20.01.2010
Dispelling the notion that urban "green" spaces help counteract greenhouse gas emissions, new research has found -- in Southern California at least -- that mowing and other lawn maintenance emit much larger amounts of greenhouse gases than the well-tended grass sequesters.

Turfgrass lawns remove carbon dioxide from the atmosphere through photosynthesis and store it as organic carbon in soil, making them important "carbon sinks." However, greenhouse gas emissions from fertilizer production, mowing, leaf blowing and other lawn management practices are four times greater than the amount of carbon stored by ornamental grass in parks, a new study shows.

These emissions include nitrous oxide released from soil after fertilization. Nitrous oxide is a greenhouse gas that's 300 times more powerful than carbon dioxide, the Earth's most problematic climate warmer.

Previous studies have documented lawns storing carbon, but this research was the first to compare carbon sequestration to nitrous oxide and carbon dioxide emissions from lawn grooming practices.

"Lawns look great -- they're nice and green and healthy, and they're photosynthesizing a lot of organic carbon. But the carbon-storing benefits of lawns are counteracted by fuel consumption," says Amy Townsend-Small, Earth system science postdoctoral researcher at University of California, Irvine. Townsend-Small is the lead author of the study, which has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

The research results are important to greenhouse gas legislation being negotiated, Townsend-Small says. "We need this kind of carbon accounting to help reduce global warming," the lead author says.

"The current trend is to count the carbon sinks and forget about the greenhouse gas emissions, but it clearly isn't enough."

Turfgrass is increasingly widespread in urban areas and covers 1.9 percent of land in the continental U.S., making it the most common irrigated crop.

In the study, Townsend-Small and colleague Claudia Czimczik analyze grass in four parks near Irvine, Calif. Each park contains two types of turf: ornamental lawns (picnic areas) that are largely undisturbed, and athletic fields (soccer and baseball) that are trampled a lot and replanted and aerated frequently.

The researchers took and evaluated soil samples over time to ascertain carbon storage, or sequestration, and they determined nitrous oxide emissions by sampling air above the turf. Then they calculated carbon dioxide emissions resulting from fuel consumption, irrigation and fertilizer production using information about lawn upkeep from park officials and contractors.

The study shows that nitrous oxide emissions from lawns are comparable to those found in agricultural farms, which are among the largest emitters of nitrous oxide globally.

In ornamental lawns, nitrous oxide emissions from fertilization offset just 10 percent to 30 percent of carbon sequestration. But fossil fuel consumption for management, the researchers calculate, releases about four times more carbon dioxide than the plots can take up. Athletic fields fare even worse, because -- due to soil disruption by tilling and resodding -- they don't trap nearly as much carbon as ornamental grass but require the same emissions-producing care.

"It's impossible for these lawns to be net greenhouse gas sinks because too much fuel is used to maintain them," Townsend-Small concludes.

The UCI study was supported by the Kearney Foundation of Soil Science and the U.S. Department of Agriculture.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/news/press/pr_archives/2010/2010-02.shtml

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>