Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uphill for the trees of the world

25.09.2013
You’ll need to get out your mountain boots to go for a walk in the woods in the future. A new study at Aarhus University shows that forests are to an increasing extent growing on steep slopes all over the world.

By Christina Troelsen og Peter Bondo Christensen


The forests of the future will to a greater extent be forced to grow on steep slopes all over the world.(Photo: Colourbox)

Human civilisation has had an impact on the world, and it continues to have an even greater impact. One of these is that the forests have been cleared and especially so in flat lowlands, so that they have gradually become restricted to steep terrain. This pattern is now emerging all across the world.

Developed countries have been particularly efficient at removing forests from fertile, flat areas of land. The process has been going on throughout the last centuries, for example in Europe. And there is a clear correlation. The better the economy, the better the political organisation, and the more orderly societal conditions a country has, the more efficient the population has been at restricting forests to steep areas, reflecting their lower utility and value.

Researchers at Aarhus University have reached this conclusion by making use of the rapidly increasing amount of data from satellites that monitor the global environment with a high level of detail. The researchers analysed high-resolution global satellite data describing the distribution of tree cover in the period 2000–2005, linking this to global data for terrain (slope), climate, human activity, and a number of political and socio-economic factors.

The study is being published in Nature Communications on Tuesday 24 September 2013.

A tendency that is spreading

While the process has been going on in densely populated, developed countries for a long time, it has also accelerated in recent times in less well-developed countries and societies, which have also started to clear forests to make room for agriculture and urban development. In thinly populated areas such as parts of Amazon, Siberia and Congo, there are still large, continuous stretches of unspoiled forests. As populations grow and human impacts increase, however, development will increasingly affect even these relatively isolated areas.

The more well-developed societies around the world are now increasingly replanting trees, just as forests are naturally regrowing in areas that have been abandoned as people move to the cities. These dynamics occur in steep areas in particular, given modern efficient land use practices cannot easily be implemented here, strengthening the development leading towards future forests becoming concentrated on slopes.

Less biodiversity

This development gives rise to concern about the biodiversity of the forests of the future, according to Brody Sandel, who is one of the researchers responsible for the study.

“The remaining forests on slopes are typically divided into smaller areas that are not continuous. For example, fragmentation reduces the availability of interior forest habitat that is preferred by many bird species. There are also a number of large predators, such as big cats like the tiger, which require extensive areas of continuous forest to be able to get enough food or avoid human persecution,” explains Brody Sandel.

In addition, small and fragmented forests are subject to more wind impact, more intense sunlight on the forest floor, and more disturbance. This results in a hotter and drier microclimate, and will have an impact on species composition in the forests of the future, promoting species that do not require a stable, dense forest environment.

“On the other hand, species in steep mountainous areas can better track their preferred climate as it becomes warmer. Hence, considering future climate change, it’s fortunate that forests will especially occur on steep terrain in the future. It’s thus a blessing in disguise that the general loss of forests has less effect on slopes,” adds Professor Jens-Christian Svenning, Aarhus University, who is spearheading the research project.

For more information, please contact

Assistant Professor Brody Sandel
Department of Bioscience
Aarhus University
+45 3074 3735
brody.sandel@biology.au.dk
Professor Jens-Christian Svenning
Department of Bioscience
Aarhus University
+45 2899 2304
svenning@biology.au.dk

Brody Sandel | EurekAlert!
Further information:
http://www.biology.au.dk

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>