Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uphill for the trees of the world

25.09.2013
You’ll need to get out your mountain boots to go for a walk in the woods in the future. A new study at Aarhus University shows that forests are to an increasing extent growing on steep slopes all over the world.

By Christina Troelsen og Peter Bondo Christensen


The forests of the future will to a greater extent be forced to grow on steep slopes all over the world.(Photo: Colourbox)

Human civilisation has had an impact on the world, and it continues to have an even greater impact. One of these is that the forests have been cleared and especially so in flat lowlands, so that they have gradually become restricted to steep terrain. This pattern is now emerging all across the world.

Developed countries have been particularly efficient at removing forests from fertile, flat areas of land. The process has been going on throughout the last centuries, for example in Europe. And there is a clear correlation. The better the economy, the better the political organisation, and the more orderly societal conditions a country has, the more efficient the population has been at restricting forests to steep areas, reflecting their lower utility and value.

Researchers at Aarhus University have reached this conclusion by making use of the rapidly increasing amount of data from satellites that monitor the global environment with a high level of detail. The researchers analysed high-resolution global satellite data describing the distribution of tree cover in the period 2000–2005, linking this to global data for terrain (slope), climate, human activity, and a number of political and socio-economic factors.

The study is being published in Nature Communications on Tuesday 24 September 2013.

A tendency that is spreading

While the process has been going on in densely populated, developed countries for a long time, it has also accelerated in recent times in less well-developed countries and societies, which have also started to clear forests to make room for agriculture and urban development. In thinly populated areas such as parts of Amazon, Siberia and Congo, there are still large, continuous stretches of unspoiled forests. As populations grow and human impacts increase, however, development will increasingly affect even these relatively isolated areas.

The more well-developed societies around the world are now increasingly replanting trees, just as forests are naturally regrowing in areas that have been abandoned as people move to the cities. These dynamics occur in steep areas in particular, given modern efficient land use practices cannot easily be implemented here, strengthening the development leading towards future forests becoming concentrated on slopes.

Less biodiversity

This development gives rise to concern about the biodiversity of the forests of the future, according to Brody Sandel, who is one of the researchers responsible for the study.

“The remaining forests on slopes are typically divided into smaller areas that are not continuous. For example, fragmentation reduces the availability of interior forest habitat that is preferred by many bird species. There are also a number of large predators, such as big cats like the tiger, which require extensive areas of continuous forest to be able to get enough food or avoid human persecution,” explains Brody Sandel.

In addition, small and fragmented forests are subject to more wind impact, more intense sunlight on the forest floor, and more disturbance. This results in a hotter and drier microclimate, and will have an impact on species composition in the forests of the future, promoting species that do not require a stable, dense forest environment.

“On the other hand, species in steep mountainous areas can better track their preferred climate as it becomes warmer. Hence, considering future climate change, it’s fortunate that forests will especially occur on steep terrain in the future. It’s thus a blessing in disguise that the general loss of forests has less effect on slopes,” adds Professor Jens-Christian Svenning, Aarhus University, who is spearheading the research project.

For more information, please contact

Assistant Professor Brody Sandel
Department of Bioscience
Aarhus University
+45 3074 3735
brody.sandel@biology.au.dk
Professor Jens-Christian Svenning
Department of Bioscience
Aarhus University
+45 2899 2304
svenning@biology.au.dk

Brody Sandel | EurekAlert!
Further information:
http://www.biology.au.dk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>