Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unsuccessful drug against anxiety opens a novel gateway for the treatment of cancer

05.09.2008
According a new study, unsatisfying drug for anxiety reveals scientists a promising novel anti-cancer drug target.

Cancer cells have multiple ways to avoid apoptosis, programmed cell death the means by which organisms deal with defective cells. One defense is to produce quantities of phosphatic acid, a phospholipid constituent of cellular membranes.

Unlike other phospholipids, phosphatidic acid also acts as a signaling molecule for cells promoting cellular growth and preventing apoptosis. Finnish and Danish researchers have now shown that phosphatidic acid may well be a target molecule for novel anti-cancer drugs.

Siramesine is a drug molecule developed and synthesized by Lundbeck A/S for the treatment of anxiety. Its development was discontinued due to unsatisfying efficacy in clinical trials in 2002. Later professor Marja Jäättelä and co-workers at the Danish cancer institute discovered that siramesine effectively inhibits the growth of both cultured cancer cells as well as solid tumors in mice. Siramesine is known to bind sigma-receptors, which physiological role remains unknown, on the cellular surface and this interaction was also believed to underlie its anti-tumor actions.

Researchers at the University of Helsinki, Finland, lead by Professor Paavo Kinnunen, studied the interaction of this drug with different phospholipids using biophysical methods and different model cellular membranes. In addition a computer simulation was performed as collaboration with MEMPHYS, Odense, Denmark, to further their understanding of this interaction.

“The key finding of our study was that siramesine avidly and specifically binds to phosphatidic acid”, says MD Mikko Parry from Helsinki Biophysics & Biomembrane group at the Institute of Biomedicine, University of Helsinki.

“Importantly, this is the first time it’s shown that a lipid second messenger can act as a drug target: it is a totally new mechanism of action and constitutes a novel paradigm for developing new, more effective anti-cancer drugs.”

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>