Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee study finds crocodiles are cleverer than previously thought

05.12.2013
Turns out the crocodile can be a shrewd hunter himself; A University of Tennessee, Knoxville, researcher has found that some crocodiles use lures to hunt their prey

Turns out the crocodile can be a shrewd hunter himself. A University of Tennessee, Knoxville, researcher has found that some crocodiles use lures to hunt their prey.

Vladimir Dinets, a research assistant professor in the Department of Psychology, is the first to observe two crocodilian species—muggers and American alligators—using twigs and sticks to lure birds, particularly during nest-building time.

The research is published in the current edition of Ethology, Ecology and Evolution. Dinets' research is the first report of tool use by any reptiles, and also the first known case of predators timing the use of lures to a seasonal behavior of the prey—nest-building.

Dinets first observed the behavior in 2007 when he spotted crocodiles lying in shallow water along the edge of a pond in India with small sticks or twigs positioned across their snouts. The behavior potentially fooled nest-building birds wading in the water for sticks into thinking the sticks were floating on the water. The crocodiles remained still for hours and if a bird neared the stick, they would lunge.

To see if the stick-displaying was a form of clever predation, Dinets and his colleagues performed systematic observations of the reptiles for one year at four sites in Louisiana, including two rookery and two nonrookery sites. A rookery is a bird breeding ground. The researchers observed a significant increase in alligators displaying sticks on their snouts from March to May, the time birds were building nests. Specifically, the reptiles in rookeries had sticks on their snouts during and after the nest-building season. At non-rookery sites, the reptiles used lures during the nest-building season.

"This study changes the way crocodiles have historically been viewed," said Dinets. "They are typically seen as lethargic, stupid and boring but now they are known to exhibit flexible multimodal signaling, advanced parental care and highly coordinated group hunting tactics."

The observations could mean the behavior is more widespread within the reptilian group and could also shed light on how crocodiles' extinct relatives—dinosaurs—behaved.

"Our research provides a surprising insight into previously unrecognized complexity of extinct reptile behavior," said Dinets. "These discoveries are interesting not just because they show how easy it is to underestimate the intelligence of even relatively familiar animals, but also because crocodilians are a sister taxon of dinosaurs and flying reptiles."

Dinets collaborated with J.C and J.D. Brueggen from the St. Augustine Alligator Farm Zoological Park in St. Augustine, Fla. More of his crocodile research can be found in his book "Dragon Songs."

Whitney Heins | EurekAlert!
Further information:
http://www.utk.edu

Further reports about: Ecology Evolution Knoxville crocodiles flying reptile

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>