Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Kansas researcher investigates mysterious stone spheres in Costa Rica

23.03.2010
Study will help determine if sites linked to the massive orbs will be designated for preservation and promotion because of their 'outstanding value to humanity'

The ancient stone spheres of Costa Rica were made world-famous by the opening sequence of "Raiders of the Lost Ark," when a mockup of one of the mysterious relics nearly crushed Indiana Jones.

So perhaps John Hoopes is the closest thing at the University of Kansas to the movie action hero.

Hoopes, associate professor of anthropology and director of the Global Indigenous Nations Studies Program, recently returned from a trip to Costa Rica where he and colleagues evaluated the stone balls for UNESCO, the United Nations cultural organization that might grant the spheres World Heritage Status.

His report will help determine if sites linked to the massive orbs will be designated for preservation and promotion because of their "outstanding value to humanity."

Hoopes, who researches ancient cultures of Central and South America, is one of the world's foremost experts on the Costa Rican spheres. He explained that although the stone spheres are very old, international interest in them is still growing.

"The earliest reports of the stones come from the late 19th century, but they weren't really reported scientifically until the 1930s — so they're a relatively recent discovery," Hoopes said. "They remained unknown until the United Fruit Company began clearing land for banana plantations in southern Costa Rica."

According to Hoopes, around 300 balls are known to exist, with the largest weighing 16 tons and measuring eight feet in diameter. Many of these are clustered in Costa Rica's Diquis Delta region. Some remain pristine in the original places of discovery, but many others have been relocated or damaged due to erosion, fires and vandalism.

The KU researcher said that scientists believe the stones were first created around 600 A.D., with most dating to after 1,000 A.D. but before the Spanish conquest.

"We date the spheres by pottery styles and radiocarbon dates associated with archeological deposits found with the stone spheres," Hoopes said. "One of the problems with this methodology is that it tells you the latest use of the sphere but it doesn't tell you when it was made. These objects can be used for centuries and are still sitting where they are after a thousand years. So it's very difficult to say exactly when they were made."

Speculation and pseudoscience have plagued general understanding of the stone spheres. For instance, publications have claimed that the balls are associated with the "lost" continent of Atlantis. Others have asserted that the balls are navigational aids or relics related to Stonehenge or the massive heads on Easter Island.

"Myths are really based on a lot of very rampant speculation about imaginary ancient civilizations or visits from extraterrestrials," Hoopes said.

In reality, archaeological excavations in the 1940s found the stone balls to be linked with pottery and materials typical of pre-Columbian cultures of southern Costa Rica.

"We really don't know why they were made," Hoopes said. "The people who made them didn't leave any written records. We're left to archeological data to try to reconstruct the context. The culture of the people who made them became extinct shortly after the Spanish conquest. So, there are no myths or legends or other stories that are told by the indigenous people of Costa Rica about why they made these spheres."

Hoopes has a created a popular Web page to knock down some of the misconceptions about the spheres. He said the stones' creation, while vague, certainly had nothing to do with lost cities or space ships.

"We think the main technique that was used was pecking and grinding and hammering with stones," said Hoopes. "There are some spheres that have been found that still have the marks of the blows on them from hammer stones. We think that that's how they were formed, by hammering on big rocks and sculpting them into a spherical shape."

Brendan M. Lynch | EurekAlert!
Further information:
http://www.ku.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>