Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH scientists help show potent GHG emissions are 3 times estimated levels

22.12.2010
In a study published December 20 in the Proceedings of the National Academy Sciences (PNAS), a team of researchers including University of New Hampshire scientists Wilfred Wollheim, William McDowell, and Jody Potter details findings that show emissions of the potent greenhouse gas nitrous oxide from global rivers and streams are three times previous estimates used by the Intergovernmental Panel on Climate Change – the leading international body for the assessment of climate change.

Waterways receiving nitrogen from human activities such as agriculture and urbanization are significant sources of nitrous oxide, a byproduct of a microbial process known as denitrification that occurs in rivers and streams and converts nitrogen into the greenhouse gas. When summed across the globe, river networks represent at least 10 percent of human-caused nitrous oxide emissions to the atmosphere. Nitrous oxide contributes to climate change and is the leading human-caused threat to stratospheric ozone destruction, the authors believe.

"We measured nitrous oxide production rates from denitrification in 72 streams draining multiple land-use and ecosystem types across the United States as part of a cross-site study of nitrogen processing in streams," says Wollheim of the Institute for the Study of Earth, Oceans, and Space (EOS). Wollheim, McDowell, and Potter are among 27 co-authors of the PNAS paper. The study was funded by the National Science Foundation (NSF).

For the study, Wollheim, co-director of the Water Systems Analysis Group (WSAG) within EOS and an assistant professor in the department of natural resources and the environment, estimated the nitrous oxide production globally using a powerful river network model developed at WSAG, without which the surprising new estimate could not have been made.

All three UNH investigators conducted experiments at sites within the NSF's Long Term Ecological Research (LTER) Network. Wollheim and Potter worked in nine sites at the Plum Island (Mass.) LTER where Wollheim serves as co-principal investigator, while McDowell and Potter ran experiments at the Luquillo, Puerto Rico LTER where McDowell is co-principal investigator. The work from the Puerto Rico LTER was Potter's master's thesis; he is now lab manager of the New Hampshire Water Resources Research Center at UNH, which McDowell directs.

"Although we found that streams are not very efficient at producing nitrous oxide, instead making more of the innocuous dinitrogen during denitrification, they are still important producers at the global scale," says McDowell, professor of natural resources and the environment. "If continued high loading of nitrogen occurs, it's possible the streams could start leaking out more nitrous oxide."

Adds lead author Jake Beaulieu of the University of Notre Dame and the U.S. Environmental Protection Agency in Cincinnati, Ohio, "Changes in agricultural and land-use practices that result in less nitrogen being delivered to streams would reduce nitrous oxide emissions from river networks."

McDowell notes that their findings point to the need for continued scientific study of the drivers of climate change.

"The story is not yet told of how our manipulations of carbon and nitrogen cycles are affecting global patterns of climate and Earth system functions," he says. "There's a lot more to learn."

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,200 graduate students.

David Sims | EurekAlert!
Further information:
http://www.unh.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>