Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH researchers help find natural products potential of frankia

03.08.2011
Soil-dwelling bacteria of the genus Frankia have the potential to produce a multitude of natural products, including antibiotics, herbicides, pigments, anticancer agents, and other useful products, according to an article in the June 2011 issue of the journal "Applied and Environmental Microbiology." University of New Hampshire professor of microbiology and genetics Louis Tisa, a Frankia expert, contributed the genomic analysis to this study.

"We were able to use cutting-edge techniques to identify unexpected compounds in this organism, Frankia," Tisa says. The researchers, led by Bradley Moore of the Scripps Oceanographic Institute, found genetic structures in Frankia that resemble those of various valuable natural product categories that produce the majority of the natural antibiotics used as drugs.

Frankia are nitrogen-fixing bacteria that live in symbiosis with actinorhizal plants (whose ranks include beech and cherry trees); they have not previously been exploited partly because these bacteria are difficult to grow in the lab. But new genetic methods make it easier to transplant genes for promising natural products from Frankia into more user-friendly host bacteria for production.

"We found something unique that nobody thought to look for in these bacteria," says Tisa, who worked with his former graduate student and current lab technician Nicholas Beauchemin, on the project.

Tisa's lab provided insight on the biology that contributed to the genome mining, a recent technique that involves searching for genetic sequences, that was critical to the results and "complementary to the far more laborious traditional natural product drug discovery that has gone unchanged for decades," Moore says.

The project grew out of a graduate class that Moore and co-author Daniel Udwary (then his post-doc, now at the University of Rhode Island) taught on "Microbial Genome Mining." The students—who are the majority of coauthors on the paper—annotated their genes and based on biosynthetic principles, and predicted pathways leading to putative natural products. They then worked with the laboratories of Pieter Dorrestein at the University of California, San Diego, and Tisa to conduct preliminary proteomic and metabolomic analyses to probe whether the predicted pathways were operative, and whether small molecule chemistry was evident.

The paper is called "Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the Genus Frankia, as Revealed by Comparative Genomic and Proteomic Analyses."

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>