Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understaning a Vulnerable Species

19.11.2010
The northern bottlenose whale—Hyperoodon ampullatus—is a strange creature. They have a long, stout body with a bulbous forehead—called a “melon”—and a short, tube-like snout.

Hunted for centuries for their oil (and until the 1970s for dog food), there may be only 160 of these gentle giants in the population found off Nova Scotia. In 2006, this population (known as the Scotian Shelf population) was designated as endangered by the Canadian Species At Risk Act.

They can be hard animals to study. For one thing, it’s tough to get out to their prime habitat (in deep submarine canyons along the edge of the Scotian Shelf, about 200 kilometres offshore of Nova Scotia), especially in the winter when the weather is rough. Secondly, they’re a deep-diving species which spends most of their time underwater. They make long, deep dives sometimes for 70 minutes, reaching depths of more than 1,400 metres. They surface to breathe for about 10 minutes, before diving down again in search of their primary prey, the armhook squid.

Not that the difficulty in conducting research has discouraged Hilary Moors. The PhD candidate with Hal Whitehead’s Cetacean Research Lab of Dalhousie University in Halifax, Nova Scotia, just calls them on the “hydrophone.”

Well, sort of. The hydrophone is a scientific instrument that’s been positioned on the ocean floor to record sounds.

She’s been able to make recordings of the northern bottlenose whale’s underwater vocalizations. The whale’s echo-location signals, used to help them navigate and locate food in dark murky waters, sound like high-pitched clicks as captured by the hydrophone.

One of the questions Ms. Moors has answered is whether the population that frequents The Gully, a Marine Protected Area on the edge of the Scotian Shelf, is year-round or migrating. It’s an important question, particularly as scientists attempt to determine if oil and gas development activities in the vicinity have impacted at all on the population.

“We knew they were around in the summer, but the winter? That’s what I wanted to find out,” says Ms. Moors, who works part-time for the Department of Fisheries and Oceans as a marine mammal observer. “What we’ve been able to determine is that they’re generally out there in the winter as much as they are in the summer.”

Last summer, Ms. Moors observed the whales as part of the crew aboard Dr. Whitehead’s 12-metre sailboat and floating research station, Balaena.

“Pretty much anytime you go out, you can see them. They’re very curious and they love to check us out,” she says.

Joining the expedition this summer was Kristin O'Brien, a master’s student originally from Surrey, B.C. Her job was to photograph the whales at the surface; the nicks and gouges in the dorsal fin can help researchers identify individual animals.

“When you’re out there, you don’t see land for weeks, but we do see lots of marine life—northern bottlenose whales, blue whales, which are also endangered, pilot whales and Sowerby’s beaked whales"

"It’s almost like living in a camper," adds Ms. Moors. "You’ll either love it or hate it, but I think for me, it’s made me very enthusiastic about the research.”

From Kentville, Nova Scotia, Ms. Moors has wanted to be a whale researcher since she was a little kid. “I remember doing a project on whales in kindergarten and that’s always stuck with me. Here I am, living the dream!”

Mel Hennigar | Newswise Science News
Further information:
http://www.dal.ca

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>