Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of brain chemistry could prevent brain damage after injury

16.05.2011
A protective molecule has been identified in the brain which, if used artificially, may prevent brain damage from the likes of stroke, head injury and Alzheimer's.

By looking at what happens in the brain after an injury, new research has finally ended speculation over whether a key molecule, 'KCC2' causes brain cell death after an injury or prevents it. The finding, published today (16th May 2011) in The Journal of Physiology now opens the door to the development of artificial forms of the compound which could provide 'neuroprotection' to those who have suffered a brain injury – to prevent further damage.

Lead author of the research Dr Igor Medina from the Université de la Méditerranée said: "Neuron damage can result from acute events such as stroke, epilepsy or head injury or by chronic degeneration found in Alzheimer's and Parkinson's.

"When brain tissue is damaged, cells often continue to die after the initial stimulus has stopped. So it is important to find a way of stopping this cascade of cell death."

KCC2 is known as a 'neuronal membrane transporter' and plays a valuable role in regulating brain cell growth and their connections with other neurons. Previous research has shown that the level of KCC2 drops drastically after the brain has been injured, but it was unknown whether this drop was causing the damage to the cells, or was decreasing because of it.

"The destiny of neurons in a damaged brain depends on a tiny equilibrium between pro-survival and pro-death signals. We wanted to know what KCC2 was signalling for – was it killing neurons or protecting them after an injury? Our study has found that KCC2 actually rescues the damaged cells."

The team studied damaged neurons from the hippocampus region of the brain, an area responsible for attention, spatial memory and navigation. They removed KCC2 altogether from damaged cells and found they died. But when they artificially increased the levels of KCC2 (by stimulating its expression using gene therapy), they found the damaged cells were protected from further damage, and death.

Dr Medina continued: "The death of neurons in the brain can be triggered by an imbalance of oxygen – known as oxidative damage, or where cells are incorrectly instructed to die by a neurotransmitter – a process known as excitotoxicity. KCC2 protects against both. It's really encouraging that we have identified a means of potentially protecting the brain from these common conditions."

Now the protective function of KCC2 is known, scientists can look at ways to maintain its levels in the brains of injured patients and prevent the cascade of damage that occurs. This could be achieved pharmaceutically, to naturally increase the levels of KCC2, or with gene therapy to introduce artificial KCC2.

"Neuroprotective agents that may stem from this research would benefit the victims of car crashes, stroke and those suffering with epilepsy, Parkinson's and Alzheimer's – it's a major focus for further studies," concluded Dr Medina.

Clare Kingston | EurekAlert!
Further information:
http://www.wiley.com

Further reports about: Alzheimer Parkinson brain cell cell death gene therapy

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>