Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea forces from hurricanes may threaten Gulf pipelines

27.05.2010
Hurricanes could snap offshore oil pipelines in the Gulf of Mexico and other hurricane-prone areas, since the storms whip up strong underwater currents, a new study suggests.
These pipelines could crack or rupture unless they are buried or their supporting foundations are built to withstand these hurricane-induced currents. "Major oil leaks from damaged pipelines could have irreversible impacts on the ocean environment," the researchers warn in their study, to be published on 10 June in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

With the official start of hurricane season approaching on June 1, news reports about the Deep Horizon oil spill that began fouling the Gulf last month have raised questions about how a hurricane might complicate the unfolding disaster.

A hurricane might also create its own spills, the new research indicates. The storms' powerful winds can raise waves 20 meters (66 feet) or more above the ocean surface. But their effects underwater are little known, although signs of seafloor damage have showed up after some hurricanes.

Based on unique measurements taken directly under a powerful hurricane, the new study's calculations are the first to show that hurricanes propel underwater currents with enough oomph to dig up the seabed, potentially creating underwater mudslides and damaging pipes or other equipment resting on the bottom.

At least 50,000 kilometers (31,000 miles) of pipelines reportedly snake across the seafloor of the Gulf of Mexico. Damage to these pipelines can be difficult to detect if it causes only smaller leaks, rather than a catastrophic break, the researchers say. Repairing underwater pipes can cost more than fixing the offshore oil drilling platforms themselves, making it all the more important to prevent damage to pipelines in the first place.
The researchers, at the U.S. Naval Research Laboratory at Stennis Space Center, Mississippi, got an unprecedented view of a hurricane when Hurricane Ivan, a category-4 storm, crossed the Gulf of Mexico in 2004. The eye of the storm passed over a network of sensors on the ocean floor, put in place to monitor currents along the continental shelf in the Gulf.

The research team found that strong currents along the sea floor pushed and pulled on the seabed, scouring its surface. "Usually you only see this in very shallow water, where waves break on the beach, stirring up sand," says David Wang, co-author of the study. "In hurricanes, the much bigger waves can stir up the seafloor all the way down to 90 meters [300 feet]."

Ivan's waves on the surface created powerful currents that dug up the seafloor. Acoustic measurements using sound waves showed that these currents lofted a lot of sediments, which clouded the water up to 25 meters (82 feet) above the seafloor. The team's seafloor sensors tracking the pressure underwater experienced a big increase, as well. This showed that the ground was washed away beneath the sensors, causing them to sink into a lower, higher-pressure zone.

Using a computer model of wave-induced current stresses, the team estimated how powerful currents would need to be for forces they exert at the sea floor to exceed a "critical force" that triggers sediment suspensions and could lead to underwater mudslides.

According to these estimates, hurricanes considerably weaker than Ivan, which was category-4, could still tear up the seafloor, causing significant damage as deep as 90 meters.

The researchers were surprised by how long the destructive currents persisted after Hurricane Ivan passed by. "The stress on the sea floor lasted nearly a week," says Hemantha Wijesekera, lead author of the study. "It doesn't go away, even after the hurricane passes."

The researchers say they're not sure what strengths of forces underwater oil pipelines are built to withstand. However, "hurricane stress is quite large, so the oil industry better pay attention,"

Wijesekera says.

The Office of Naval Research funded this study.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>