Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC study may lead to treatments that are effective against all MRSA strains

01.02.2013
Attribute of dominant MRSA strain enables it to persist on skin and spread in community

In the last decade, a new strain of MRSA has emerged that can spread beyond hospital walls, putting everyone at risk of contracting the dangerous bacterial infection. This particular strain of MRSA – known as USA300 – contains a chunk of genes not shared by any other strains, though it is unclear how this unique genetic material enables the bacteria to survive and persist in the community.

Now, research from the University of North Carolina School of Medicine has pinpointed a gene that causes the infection to linger on the skin longer than other strains, allowing it to be passed more readily from one person to the next.

The gene makes this strain of MRSA resistant to specific compounds on the skin called polyamines that are toxic to other forms of the bacteria. In uncovering this property, researchers have identified a novel target for developing new treatments against methicillin-resistant Staphylococcus aureus, particularly the USA300 strain that accounts for the vast majority of MRSA skin and soft tissue infections seen in emergency rooms.

"The problem is by the time you figure out how one strain comes into dominance, it often fades away and a new strain comes in. But because these compounds occur naturally and are so toxic, we still think they can lead to treatments that are effective against all MRSA. We will just have to put in a little extra work to block the gene and make this particular strain of MRSA susceptible to polyamines," said senior study author Anthony Richardson, PhD, assistant professor of microbiology and immunology at the UNC School of Medicine.

The UNC study, published Jan. 16, 2013, in the journal Cell Host & Microbe, follows an attribute of MRSA previously unexplored by other scientists -- its sensitivity to the naturally occurring compounds called polyamines.

Polyamines are critical to wound repair because they are anti-inflammatory and promote tissue regeneration. Scientists first observed that MRSA infections were killed by polyamines in the 1950s, but no one followed up until recently, when Richardson decided to twist this scientific observation into a treatment option.

He and his colleagues tested hundreds of MRSA strains and found that all of them except one – USA300 – were sensitive to polyamines. When they looked to see what was different about this particular strain, they found that it contained a chunk of 34 genes, called the arginine catabolic mobile element (ACME), that none of the other strains possessed.

Then the researchers mutated each of these genes, one by one, until they created a strain that could be killed off by the polyamines. To confirm that they had the right gene, the researchers added a normal, non-mutated version of the gene -- named SpeG – to other strains of MRSA and showed that it could make them resistant to these compounds.

Finally, Richardson wanted to know if the gene exerts the same effects in the context of a real infection. Using mouse models of MRSA infection, he and his colleagues showed that the presence of the SpeG gene helped the potent USA300 strain to stay on the skin for anywhere from a day to a week, giving the infection time to spread to the next host.

"Previously, the field tried to understand MRSA by focusing on attributes that we already knew were important, such as the amount of toxins or virulence factors a given strain makes. Those elements may explain why the disease is so bad when you get it, but they don't explain how a particular strain takes over. Our work uncovers the molecular explanation for one strain's rapid and efficient spread to people outside of a crowded hospital setting," said Richardson.

The research was funded by the National Institute of Allergy and Infectious Diseases. Study co-authors from UNC include Lance R. Thurlow, PhD; Gauri S. Joshi, PhD; Justin R. Clark; Jeffrey S. Spontak; Crystal J. Neeley; and Robert Maile, PhD.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>