Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC study finds that hot and cold senses interact

09.04.2013
A study from the University of North Carolina School of Medicine offers new insights into how the nervous system processes hot and cold temperatures. The research led by neuroscientist Mark J. Zylka, PhD, associate professor of cell biology and physiology, found an interaction between the neural circuits that detect hot and cold stimuli: cold perception is enhanced when nerve circuitry for heat is inactivated.

"This discovery has implications for how we perceive hot and cold temperatures and for why people with certain forms of chronic pain, such as neuropathic pain, or pain arising as direct consequence of a nervous system injury or disease, experience heightened responses to cold temperatures," says Zylka, a member of the UNC Neuroscience Center.


The neural circuit that senses heat and itch is labeled in red. Neural circuits that process other sensory stimuli are labeled in blue and green. The image is from the spinal cord.

Credit: Zylka Lab, UNC School of Medicine

The study also has implications for why a promising new class of pain relief drugs known as TRPV1 antagonists (they block a neuron receptor protein) cause many patients to shiver and "feel cold" prior to the onset of hyperthermia, an abnormally elevated body temperature. Enhanced cold followed by hyperthermia is a major side effect that has limited the use of these drugs in patients with chronic pain associated with multiple sclerosis, cancer, and osteoarthritis.

Zylka's research sheds new light on how the neural circuits that regulate temperature sensation bring about these responses, and could suggest ways of reducing such side-effects associated with TRPV1 antagonists and related drugs.

The research was selected by the journal Neuron as cover story for the April 10, 2013 print edition and was available in the April 4, 2013 advanced online edition.

This new study used cutting edge cell ablation technology to delete the nerve circuit that encodes heat and some forms of itch while preserving the circuitry that sense cold temperatures. This manipulation results in animals that were practically "blind" to heat, meaning they could no longer detect hot temperatures, Zylka explains. "Just like removing heat from a room makes us feel cold (such as with an air conditioner), removing the circuit that animals use to sense heat made them hypersensitive to cold. Physiological studies indicated that these distinct circuits regulate one another in the spinal cord."

TRPV1 is a receptor for heat and is found in the primary sensory nerve circuit that Zylka studied. TRPV1 antagonists make patients temporarily blind to heat, which Zylka speculates is analogous to what happened when his lab deleted the animals' circuit that detects heat: cold hypersensitivity.

Zylka emphasizes that future studies will be needed to confirm that TRPV1 antagonists affect cold responses in a manner similar to what his lab found with nerve circuit deletion.

The study was conducted in the Zylka lab by postdoctoral scientists Eric S. McCoy, Sarah E. Street, and Jihong Zheng and by research associates Bonnie Taylor-Blake and Alaine Pribisco. Funding for the research came from the Searle Scholars Program, The Klingenstein Foundation, The Rita Allen Foundation, the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute of Child Health and Human Development (NICHD).

Les Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>