Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC study finds that hot and cold senses interact

09.04.2013
A study from the University of North Carolina School of Medicine offers new insights into how the nervous system processes hot and cold temperatures. The research led by neuroscientist Mark J. Zylka, PhD, associate professor of cell biology and physiology, found an interaction between the neural circuits that detect hot and cold stimuli: cold perception is enhanced when nerve circuitry for heat is inactivated.

"This discovery has implications for how we perceive hot and cold temperatures and for why people with certain forms of chronic pain, such as neuropathic pain, or pain arising as direct consequence of a nervous system injury or disease, experience heightened responses to cold temperatures," says Zylka, a member of the UNC Neuroscience Center.


The neural circuit that senses heat and itch is labeled in red. Neural circuits that process other sensory stimuli are labeled in blue and green. The image is from the spinal cord.

Credit: Zylka Lab, UNC School of Medicine

The study also has implications for why a promising new class of pain relief drugs known as TRPV1 antagonists (they block a neuron receptor protein) cause many patients to shiver and "feel cold" prior to the onset of hyperthermia, an abnormally elevated body temperature. Enhanced cold followed by hyperthermia is a major side effect that has limited the use of these drugs in patients with chronic pain associated with multiple sclerosis, cancer, and osteoarthritis.

Zylka's research sheds new light on how the neural circuits that regulate temperature sensation bring about these responses, and could suggest ways of reducing such side-effects associated with TRPV1 antagonists and related drugs.

The research was selected by the journal Neuron as cover story for the April 10, 2013 print edition and was available in the April 4, 2013 advanced online edition.

This new study used cutting edge cell ablation technology to delete the nerve circuit that encodes heat and some forms of itch while preserving the circuitry that sense cold temperatures. This manipulation results in animals that were practically "blind" to heat, meaning they could no longer detect hot temperatures, Zylka explains. "Just like removing heat from a room makes us feel cold (such as with an air conditioner), removing the circuit that animals use to sense heat made them hypersensitive to cold. Physiological studies indicated that these distinct circuits regulate one another in the spinal cord."

TRPV1 is a receptor for heat and is found in the primary sensory nerve circuit that Zylka studied. TRPV1 antagonists make patients temporarily blind to heat, which Zylka speculates is analogous to what happened when his lab deleted the animals' circuit that detects heat: cold hypersensitivity.

Zylka emphasizes that future studies will be needed to confirm that TRPV1 antagonists affect cold responses in a manner similar to what his lab found with nerve circuit deletion.

The study was conducted in the Zylka lab by postdoctoral scientists Eric S. McCoy, Sarah E. Street, and Jihong Zheng and by research associates Bonnie Taylor-Blake and Alaine Pribisco. Funding for the research came from the Searle Scholars Program, The Klingenstein Foundation, The Rita Allen Foundation, the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute of Child Health and Human Development (NICHD).

Les Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>