Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists tackle viral mysteries

30.06.2009
Scientists know that some cancers are triggered by viruses, which take over cellular systems and cause uncontrolled cell growth.

Doctors – and patients who get shingles late in life – have also known for many years that some viruses, particularly the herpes virus, can lie dormant in a person's cells for long periods of time and then reactivate, causing disease. These viruses also cause significant disease in immunosuppressed people and those living with HIV/AIDS.

A recent study led by Blossom Damania, Ph.D., associate professor of microbiology and immunology at the University of North Carolina at Chapel Hill, focuses on the intersection of these two scientific puzzles, resulting in new discoveries about how one herpesvirus known to cause cancer may reactivate when the infected cell senses another type of virus entering it.

Damania, who is also a member of the UNC Lineberger Comprehensive Cancer Center, focused on Kaposi's sarcoma-associated herpesvirus (KSHV), an agent associated with Kaposi's sarcoma, primary effusion lymphoma and another syndrome called Castleman's disease.

"We hypothesized that a secondary viral infection could serve as the trigger for KSHV, so we took cells infected with KSHV and activated immune receptor proteins called toll-like receptors that are present on the body's cells. Toll-like receptors are the guardians of the cell and essentially function to alert the cell to the presence of an intruder. These proteins act as an alarm system to tell the cell that a foreign organism is trying to enter it," said Damania.

Ten human toll-like receptors have been identified by scientists thus far, but the UNC team found that activation of only two of them, TLR7 and TLR8, reactivated the virus, allowing it to reproduce itself. The cells self-destruct in an attempt to kill the virus, but by the time the cell dies, the virus has already replicated and escaped, moving on to infect other cells in the body.

"This is a very exciting finding because it helps us better understand how a latent virus can suddenly reactivate, replicating and spreading throughout the body. Additionally, since Kaposi's sarcoma is a cancer that is associated with this phase of viral infection, it is plausible that the virus' activation and replication may eventually lead to the development of Kaposi's sarcoma in an infected individual.

"Laboratory experiments in a controlled research environment often do not reflect the real world, where we are constantly exposed to many different environmental factors and other microorganisms. This finding is an important reminder that multiple factors are involved in causing disease," she added.

The research was published today in the Proceedings of the National Academy of Sciences. Study co-authors from the UNC Lineberger Comprehensive Cancer Center include first-author Sean Gregory, graduate student; John West, Ph.D. postdoctoral fellow; Patrick Dillon, Ph.D. postdoctoral fellow; and Dirk Dittmer, Ph.D., associate professor of microbiology and immunology.

This work was supported by the National Institutes of Health, the Leukemia and Lymphoma Society and the Burroughs Wellcome Fund. Damania is a Leukemia and Lymphoma Society Scholar and a Burroughs Wellcome Fund Investigator in Infectious Disease.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>