Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists tackle viral mysteries

30.06.2009
Scientists know that some cancers are triggered by viruses, which take over cellular systems and cause uncontrolled cell growth.

Doctors – and patients who get shingles late in life – have also known for many years that some viruses, particularly the herpes virus, can lie dormant in a person's cells for long periods of time and then reactivate, causing disease. These viruses also cause significant disease in immunosuppressed people and those living with HIV/AIDS.

A recent study led by Blossom Damania, Ph.D., associate professor of microbiology and immunology at the University of North Carolina at Chapel Hill, focuses on the intersection of these two scientific puzzles, resulting in new discoveries about how one herpesvirus known to cause cancer may reactivate when the infected cell senses another type of virus entering it.

Damania, who is also a member of the UNC Lineberger Comprehensive Cancer Center, focused on Kaposi's sarcoma-associated herpesvirus (KSHV), an agent associated with Kaposi's sarcoma, primary effusion lymphoma and another syndrome called Castleman's disease.

"We hypothesized that a secondary viral infection could serve as the trigger for KSHV, so we took cells infected with KSHV and activated immune receptor proteins called toll-like receptors that are present on the body's cells. Toll-like receptors are the guardians of the cell and essentially function to alert the cell to the presence of an intruder. These proteins act as an alarm system to tell the cell that a foreign organism is trying to enter it," said Damania.

Ten human toll-like receptors have been identified by scientists thus far, but the UNC team found that activation of only two of them, TLR7 and TLR8, reactivated the virus, allowing it to reproduce itself. The cells self-destruct in an attempt to kill the virus, but by the time the cell dies, the virus has already replicated and escaped, moving on to infect other cells in the body.

"This is a very exciting finding because it helps us better understand how a latent virus can suddenly reactivate, replicating and spreading throughout the body. Additionally, since Kaposi's sarcoma is a cancer that is associated with this phase of viral infection, it is plausible that the virus' activation and replication may eventually lead to the development of Kaposi's sarcoma in an infected individual.

"Laboratory experiments in a controlled research environment often do not reflect the real world, where we are constantly exposed to many different environmental factors and other microorganisms. This finding is an important reminder that multiple factors are involved in causing disease," she added.

The research was published today in the Proceedings of the National Academy of Sciences. Study co-authors from the UNC Lineberger Comprehensive Cancer Center include first-author Sean Gregory, graduate student; John West, Ph.D. postdoctoral fellow; Patrick Dillon, Ph.D. postdoctoral fellow; and Dirk Dittmer, Ph.D., associate professor of microbiology and immunology.

This work was supported by the National Institutes of Health, the Leukemia and Lymphoma Society and the Burroughs Wellcome Fund. Damania is a Leukemia and Lymphoma Society Scholar and a Burroughs Wellcome Fund Investigator in Infectious Disease.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>