Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers have immune cells running in circles

03.11.2009
University of Illinois at Chicago College of Medicine researchers have identified the important role a protein plays in the body's first line of defense in directing immune cells called neutrophils toward the site of infection or injury.

Their results are described online in the Proceedings of the National Academy of Sciences.

Neutrophils are white blood cells that are activated by chemical cues to move quickly to the site of injury or infection, where they ingest bacteria. When alerted to infection, neutrophils move by changing shape, developing a distinct front and back, sending a "foot" out in front of them, and "crawling" toward the site of infection.

Hoping to better understand the role of a protein called p55 or MPPI that they had previously identified as highly expressed in neutrophils, the UIC researchers bred the first mice that completely lacked this protein.

The "knockout" mice had marked difficulty fighting infection and were slow to heal, according to Athar Chishti, professor of pharmacology and principal investigator in the study.

Instead of forming a single large pseudopod, or foot-like extension, in the direction of the infection, neutrophils from the knockout mice formed a number of small extensions all around the cell, said Chishti.

Neutrophils lacking p55 would follow a meandering path, wandering in circles. "It was as though the neutrophils had lost their sense of direction," said Brendan Quinn, graduate assistant researcher in pharmacology and first author of the study.

Neutrophils are part of the body's innate immunity and its first line of defense, so the speed of the response is key to healing. "The neutrophils eventually get to the infection site, but they would get there late," Quinn said.

The researchers also established how p55 wields its effect on neutrophils, demonstrating that although the cell's ability to reorganize its actin skeleton to produce pseudopods was undisturbed, a signaling lipid known to be important in establishing polarity, called PIP3, failed to localize on the leading edge of the p55-null neutrophils, instead diffusing throughout the cell.

Further, the p55-null neutrophils had a marked reduced activation of another important signaling protein, Akt, which is believed to play an important role in many cancers.

"This study offers clues to an important cell signaling pathway that is critical to cellular polarization processes in neutrophils and many other cells," said Chishti.

Emily J. Welch, Anthony C. Kim, Anwar A. Khan and Shafi M Kuchay of the department of pharmacology at the UIC College of Medicine and Mary A. Lokuta and Anna Huttenlocher of the departments of pediatrics and pharmacology at the University of Wisconsin, Madison, also contributed to the study. The work was funded by grants from the National Institutes of Health and the Department of Defense Neurofibromatosis Research Program Career Development Award.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>