Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI study explains how heart attack can lead to heart rupture

18.11.2011
For people who initially survive a heart attack, a significant cause of death in the next few days is cardiac rupture -- literally, bursting of the heart wall.

A new study by University of Iowa researchers pinpoints a single protein as the key player in the biochemical cascade that leads to cardiac rupture. The findings, published Nov. 13 as an Advance Online Publication (AOP) of the journal Nature Medicine, suggest that blocking the action of this protein, known as CaM kinase, may help prevent cardiac rupture and reduce the risk of death.

After a heart attack, the body produces a range of chemicals that trigger biological processes involved in healing and repair. Unfortunately, many of these chemical signals can become "too much of a good thing" and end up causing further damage often leading to heart failure and sudden death.

"Two of the medicines that are most effective for heart failure are beta-blockers, which block the action of adrenaline, and drugs that block the angiotensin receptor," explains Mark E. Anderson, M.D., Ph.D., UI professor and head of internal medicine and senior study author. "The third tier of therapy is medication that blocks the action of aldosterone."

Aldosterone levels increase in patients following a heart attack, and higher levels of the hormone are clearly associated with greater risk of death in the days immediately following a heart attack.

Increased aldosterone levels also are associated with a burst of oxidation in heart muscle, and in 2008, Anderson's team showed that oxidation activates CaM kinase. Anderson's research has also shown that CaM kinase is a lynchpin in the beta-blocker and angiotensin pathways.

"We wondered if aldosterone might somehow work through CaM kinase and, if it did, could some of the benefits of aldosterone blockers be attributed to effects on CaM kinase?" Anderson says.

Anderson's team, including co-first authors Julie He (photo, right), a student in the UI Medical Scientist Training Program; Mei-Ling Joiner, Ph.D.; Madhu Singh, Ph.D.; Elizabeth Luczak, Ph.D.; and Paari Swaminathan, M.D., devised a series of experiments in mice to investigate how elevated levels of aldosterone damage heart muscle after a heart attack and how Cam kinase is involved.

The experiments confirmed that aldosterone increases the amount of oxidized, and therefore, activated CaM kinase in heart muscle. Mice given excess aldosterone, mimicking levels seen in human patients, were twice as likely to die after a heart attack as mice that were not given extra aldosterone (70 percent vs. 35 percent), and the cause of death was heart rupture.

Importantly, any treatment that reduced the amount of oxidized CaM kinase or otherwise inhibited CaM kinase activity lowered the risk of cardiac rupture and death in the mice.

Interestingly, the researchers found that activated CaM kinase prompted heart muscle cells to produce an enzyme called MMP9 that is implicated in heart rupture.

"Although there are many sources of this enzyme, our study showed that heart muscle itself is actually making this protein too and is acting against its own self-interest in doing so," Anderson says. "We don't know why it happens, but inhibiting CaM kinase can prevent it."

The MMP9 enzyme is involved in remodeling the "matrix" that surrounds heart cells. This matrix, which acts like mortar between cells, is constantly being broken down and rebuilt. In hearts that rupture after heart attack this remodeling process becomes excessive, weakening the matrix to the point that it ruptures.

Because matrix remodeling plays a role in other diseases, including cancer, Anderson notes that the CaM kinase findings may have clinical implications beyond heart disease.

Overall, the UI study suggests that blocking the biochemical processes triggered by aldosterone might help prevent cardiac rupture following a heart attack.

Anderson notes that a multi-center study currently underway in France is poised to determine if patients would benefit from getting aldosterone blockers right away rather than waiting several weeks.

"We think our study provides experimental evidence for why that should work," he says.

"We have now identified CaM kinase as a critical component for the disease effects of the three core therapeutic pathways in heart, and we are closer to understanding fundamental elements of these signaling pathways," Anderson says. "The findings enhance excitement that CaM kinase might be an important therapeutic target in heart disease, and developing Cam kinase inhibitors is a major goal for us so that we can move this from experimental findings to clinical testing."

The research was funded in part by grants from the National Institutes of Health, the American Heart Association, UI Research Foundation and the Fondation Leducq Award to the Alliance for Calmodulin Kinase Signaling in Heart Disease.

The interdisciplinary research team included scientists from four departments in the UI Carver College of Medicine; the Iowa City Veterans Affairs Medical Center; Maastricht University in the Netherlands; University of Leuven in Belgium; and Ohio State University.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>