Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI study explains how heart attack can lead to heart rupture

18.11.2011
For people who initially survive a heart attack, a significant cause of death in the next few days is cardiac rupture -- literally, bursting of the heart wall.

A new study by University of Iowa researchers pinpoints a single protein as the key player in the biochemical cascade that leads to cardiac rupture. The findings, published Nov. 13 as an Advance Online Publication (AOP) of the journal Nature Medicine, suggest that blocking the action of this protein, known as CaM kinase, may help prevent cardiac rupture and reduce the risk of death.

After a heart attack, the body produces a range of chemicals that trigger biological processes involved in healing and repair. Unfortunately, many of these chemical signals can become "too much of a good thing" and end up causing further damage often leading to heart failure and sudden death.

"Two of the medicines that are most effective for heart failure are beta-blockers, which block the action of adrenaline, and drugs that block the angiotensin receptor," explains Mark E. Anderson, M.D., Ph.D., UI professor and head of internal medicine and senior study author. "The third tier of therapy is medication that blocks the action of aldosterone."

Aldosterone levels increase in patients following a heart attack, and higher levels of the hormone are clearly associated with greater risk of death in the days immediately following a heart attack.

Increased aldosterone levels also are associated with a burst of oxidation in heart muscle, and in 2008, Anderson's team showed that oxidation activates CaM kinase. Anderson's research has also shown that CaM kinase is a lynchpin in the beta-blocker and angiotensin pathways.

"We wondered if aldosterone might somehow work through CaM kinase and, if it did, could some of the benefits of aldosterone blockers be attributed to effects on CaM kinase?" Anderson says.

Anderson's team, including co-first authors Julie He (photo, right), a student in the UI Medical Scientist Training Program; Mei-Ling Joiner, Ph.D.; Madhu Singh, Ph.D.; Elizabeth Luczak, Ph.D.; and Paari Swaminathan, M.D., devised a series of experiments in mice to investigate how elevated levels of aldosterone damage heart muscle after a heart attack and how Cam kinase is involved.

The experiments confirmed that aldosterone increases the amount of oxidized, and therefore, activated CaM kinase in heart muscle. Mice given excess aldosterone, mimicking levels seen in human patients, were twice as likely to die after a heart attack as mice that were not given extra aldosterone (70 percent vs. 35 percent), and the cause of death was heart rupture.

Importantly, any treatment that reduced the amount of oxidized CaM kinase or otherwise inhibited CaM kinase activity lowered the risk of cardiac rupture and death in the mice.

Interestingly, the researchers found that activated CaM kinase prompted heart muscle cells to produce an enzyme called MMP9 that is implicated in heart rupture.

"Although there are many sources of this enzyme, our study showed that heart muscle itself is actually making this protein too and is acting against its own self-interest in doing so," Anderson says. "We don't know why it happens, but inhibiting CaM kinase can prevent it."

The MMP9 enzyme is involved in remodeling the "matrix" that surrounds heart cells. This matrix, which acts like mortar between cells, is constantly being broken down and rebuilt. In hearts that rupture after heart attack this remodeling process becomes excessive, weakening the matrix to the point that it ruptures.

Because matrix remodeling plays a role in other diseases, including cancer, Anderson notes that the CaM kinase findings may have clinical implications beyond heart disease.

Overall, the UI study suggests that blocking the biochemical processes triggered by aldosterone might help prevent cardiac rupture following a heart attack.

Anderson notes that a multi-center study currently underway in France is poised to determine if patients would benefit from getting aldosterone blockers right away rather than waiting several weeks.

"We think our study provides experimental evidence for why that should work," he says.

"We have now identified CaM kinase as a critical component for the disease effects of the three core therapeutic pathways in heart, and we are closer to understanding fundamental elements of these signaling pathways," Anderson says. "The findings enhance excitement that CaM kinase might be an important therapeutic target in heart disease, and developing Cam kinase inhibitors is a major goal for us so that we can move this from experimental findings to clinical testing."

The research was funded in part by grants from the National Institutes of Health, the American Heart Association, UI Research Foundation and the Fondation Leducq Award to the Alliance for Calmodulin Kinase Signaling in Heart Disease.

The interdisciplinary research team included scientists from four departments in the UI Carver College of Medicine; the Iowa City Veterans Affairs Medical Center; Maastricht University in the Netherlands; University of Leuven in Belgium; and Ohio State University.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>