Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researcher learns mechanism of hearing is similar to car battery

08.01.2013
Study made use of the fruit fly 'love song'
University of Iowa biologist Daniel Eberl and his colleagues have shown that one of the mechanisms involved in hearing is similar to the battery in your car.

And if that isn’t interesting enough, the UI scientists advanced their knowledge of human hearing by studying a similar auditory system in fruit flies—and by making use of the fruit fly “love song.”

To see how the mechanism of hearing resembles a battery, you need to know that the auditory system of the fruit fly contains a protein that functions as a sodium/potassium pump, often called the sodium pump for short, and is highly expressed in a specialized support cell called the scolopale cell.

The scolopale cell is important because it wraps around the sensory endings in the fly’s ear and makes a tight extra-cellular cavity or compartment around them called the scolopale space.

“You could think of these compartments as similar to the compartments of a battery that need to be charged up so they can drive electrons through circuits,” says Eberl, whose paper made the cover of the journalProceedings of the National Academy of Sciences. “In the auditory system, the charge in the scolopale space drives ions, or electrically charged atoms, through membrane channels in the sensory endings that open briefly in response to activation by sounds.

“Our work shows that the sodium pump plays a particularly important role in this cell to help replenish or recharge this compartment with the right ions. The human ear also relies on a compartment called the scala media, which similarly drives ions into the sensory cells of the ear,” he says.

How was the research done? This is where the fruit fly love song comes into play.

Testing whether or not a fruit fly can hear the love song—a sound generated by a vibrating wing—enables Eberl to learn whether electrical recharging is occurring in the fly ear. The fruit fly love song played a role in the research by stimulating the fly to move whenever a sound was emitted and received.

“In these experiments we tested the fly's hearing by inserting tiny electrodes in the fly's antenna, then measuring the electrical responses when we play back computer-generated love songs,” he says.

Eberl notes there are many similarities between fruit fly and human mechanisms of hearing. That means his work on the fly model to identify additional new components required for generating the correct ion balance in the ear will help scientists to understand the human process in more detail.

Eberl’s co-authors on the paper areMadhuparna Roy, postdoctoral associate at the University of Pittsburgh, and Elena Sivan-Loukianova, UI biology research scientist. At the time of the research, Roy was a graduate student in the UI Graduate College studying in the College of Liberal Arts and Sciences Department of Biology.

The title of the paper, published last week, is "Cell-type-specific roles of Na+/K+ ATPase subunits in Drosophila auditory mechanosensation."

The research was supported by the National Institutes of Health (grant number 5P30DC010362-03) and the Iowa Center for Molecular Auditory Neuroscience at the UI (grant number P30DC010362).
Contacts
Daniel Eberl, Biology, 319-335-1323
Gary Galuzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>