Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researcher learns mechanism of hearing is similar to car battery

08.01.2013
Study made use of the fruit fly 'love song'
University of Iowa biologist Daniel Eberl and his colleagues have shown that one of the mechanisms involved in hearing is similar to the battery in your car.

And if that isn’t interesting enough, the UI scientists advanced their knowledge of human hearing by studying a similar auditory system in fruit flies—and by making use of the fruit fly “love song.”

To see how the mechanism of hearing resembles a battery, you need to know that the auditory system of the fruit fly contains a protein that functions as a sodium/potassium pump, often called the sodium pump for short, and is highly expressed in a specialized support cell called the scolopale cell.

The scolopale cell is important because it wraps around the sensory endings in the fly’s ear and makes a tight extra-cellular cavity or compartment around them called the scolopale space.

“You could think of these compartments as similar to the compartments of a battery that need to be charged up so they can drive electrons through circuits,” says Eberl, whose paper made the cover of the journalProceedings of the National Academy of Sciences. “In the auditory system, the charge in the scolopale space drives ions, or electrically charged atoms, through membrane channels in the sensory endings that open briefly in response to activation by sounds.

“Our work shows that the sodium pump plays a particularly important role in this cell to help replenish or recharge this compartment with the right ions. The human ear also relies on a compartment called the scala media, which similarly drives ions into the sensory cells of the ear,” he says.

How was the research done? This is where the fruit fly love song comes into play.

Testing whether or not a fruit fly can hear the love song—a sound generated by a vibrating wing—enables Eberl to learn whether electrical recharging is occurring in the fly ear. The fruit fly love song played a role in the research by stimulating the fly to move whenever a sound was emitted and received.

“In these experiments we tested the fly's hearing by inserting tiny electrodes in the fly's antenna, then measuring the electrical responses when we play back computer-generated love songs,” he says.

Eberl notes there are many similarities between fruit fly and human mechanisms of hearing. That means his work on the fly model to identify additional new components required for generating the correct ion balance in the ear will help scientists to understand the human process in more detail.

Eberl’s co-authors on the paper areMadhuparna Roy, postdoctoral associate at the University of Pittsburgh, and Elena Sivan-Loukianova, UI biology research scientist. At the time of the research, Roy was a graduate student in the UI Graduate College studying in the College of Liberal Arts and Sciences Department of Biology.

The title of the paper, published last week, is "Cell-type-specific roles of Na+/K+ ATPase subunits in Drosophila auditory mechanosensation."

The research was supported by the National Institutes of Health (grant number 5P30DC010362-03) and the Iowa Center for Molecular Auditory Neuroscience at the UI (grant number P30DC010362).
Contacts
Daniel Eberl, Biology, 319-335-1323
Gary Galuzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>